Lecture 11: Acid-Base Balance (Bolsor) Flashcards

0
Q

Which buffering system (intracellular or extracellular) is sensitive to regulation and can respond more rapidly to changes in acid/base balance?

A

extracellular

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
1
Q

What are the major buffering systems?

A

intracellular (primarily protein and phosphates) and extracellular (primarily CO2/HCO3 system)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Can the intracellular buffer system remove excess acid or base from the body?

A

NO

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

3 stage response to acid/base change:

A

1) chemical buffering (rapid)
2) respiratory system (rapid; +/- alveolar ventilation of CO2 in response to changes in extracellular pH)
3) kidneys (delayed response; responds to chronic acidemia/alkalemia by controlling excretion/production of HCO3)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Why is the amount of free H2CO3 in the body not equal to the amount of H+ ions?

A

H2CO3 doesn’t completely dissociate in the blood

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Equation for acid/base balance. What drives this equation left or right?

A

CO2 + H2O H2CO3 HCO3 + H

  • Equation shifts to the right when HCO3 is lost (tries to replace HCO3 that was lost)
  • Equation shifts to the left when HCO3 gained (tries to get rid of excess HCO3)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Respiratory acidemia and possible causes

A

failure of the lungs to excrete adequate amounts of CO2.

Causes: alveolar hypoventilation due to pulmonary disease or central respiratory depression

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

How is respiratory acidemia compensated for?

A

Metabolic compensation: increased renal reabsorption of bicarbonate and excretion of acidic urine

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

How can you gauge how much H+ is released into circulation?

A

How much HCO3 lvls decreased in order to buffer the H+. Greater decrease in HCO3 = more H+ present

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

What does an “isobar” represent?

A

constant CO2 level while pH and HCO3 concentrations change

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

If pCO2 is increased and pH remains the same, what must happen to HCO3?

A

Must increase

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

If pCO2 is constant and pH decreases, what happens to HCO3?

A

decreases

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

metabolic acidemia and possible causes

A

abnormal retention of fixed (i.e. non-CO2) acids.

Causes: diabetes, trauma, shock, diarrhea

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Most common type of acidosis

A

metabolic acidemia. It is also the most common acid/base imbalance seen in animals with kidney failure

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

How is metabolic acidemia compensated for?

A
  • hyperventilation to eliminate CO2
  • increased reabsorption and synthesis of HCO3 by kidneys
  • excretion of an acidic urine
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

What is anion gap, what is it used for, and how is it calculated?

A

Measures the excess of unmeasured anions over unmeasured cations and is an index of whether or not the metabolic acidemia is due to loss of HCO3 or addition of H (determines what TYPE of metabolic acidosis is occuring). Calculated by subtracting concentrations of total chloride + bicarbonate from concentration of anions (primarily Na and K)

16
Q

Inadequate O2 delivery to tissues triggers switch to what kind of metabolism?

A

anaerobic metabolism. Produces a by-product of lactic acid which stimulates hyperventilation

17
Q

Which two cations constitute the vast majority of extracellular cations?

A

Na and K (95% of extracellular cations)

18
Q

Which 2 anions constitute 85% of extracellular anions?

A

Cl and HCO3

19
Q

Metabolic acidemia with normal anion gap is usually assoc. with:

A
  • loss of bicarbonate with no increase in unmeasured anions
  • hyperchloremia (kidney absorbs more Cl in response to low HCO3)
  • often caused by chronic diarrhea
20
Q

Metabolic acidemia with elevated anion gap is assoc. with:

A
  • increase in non-HCO3 and non-Cl anions (i.e. lactic acid)

- increased H+

21
Q

Common cause of metabolic acidosis with elevated anion gap

A

shock due to increased lactic acid. Lactic acid effectively replaces the HCO3 in circulation

22
Q

respiratory alkalemia and possible causes

A

hyperventilation with excessive loss of CO2

Causes: CNS lesions, anemia

23
Q

How is respiratory alkalemia compensated for?

A

increased renal excretion of bicarbonate and thus an alkaline urine

24
metabolic alkalosis and possible causes
Excessive loss of H ions or excessive intake or retention of base Causes: vomiting (loss of HCl), hypokalemia (H moves into cells to exchange for K ions that move into the extracellular fluid to replace lost K)
25
How is metabolic alkalosis compensated for?
hypoventilation (increased CO2 retention), increased renal excretion of HCO3 and alkaline urine
26
How does acid/base status alter plasma K concentration?
During acidemia, H+ moves into cells to be buffered. However, K+ moves out of the cell to counterbalance this change and result = hyperkalemia During alkalemia, H+ moves out of cell to compensate, and K+ moves into cell to counteract it. Result = hypokalemia BOTTOM LINE: acidemia or alkalemia can also elicit disturbances in K balance
27
If VOMITING (loss of HCl) is the cause of metabolic alkalosis, how is kidney's ability to compensate for the alkalosis compromised?
Loss of HCl results in hypochloremia (low Cl), which inhibits kidney's ability to properly excrete HCO3. In severe cases, aldosterone secretion responding to low extracellular volume results in even more K excretion and exacerbates the situation.
28
Define 4 regions on HCO3 vs. pH Davenport diagrams
``` Upper left (low pH, high HCO3): respiratory acidosis Bottom left (low pH, low HCO3): metabolic acidosis Upper right (High pH, high HCO3): metabolic alkalosis Bottom right (high pH, low HCO3): respiratory alkalosis ```
29
what do you look at first when reading a blood gas measurement? Second? Third? What do these values tell you?
1st: pH (tells you if disturbance is acidosis or alkalosis) 2nd: PCO2 (tells you if disturbance is respiratory or metabolic in origin)
30
Low pH indicates
acidosis
31
High pH indicates
alkalosis
32
High PCO2 with low pH indicates
pH disturbance (acidosis) has a respiratory component
33
Low pH, high PCO2, and low HCO3 indicates:
Acidosis with ONLY a respiratory component (no metabolic component)
34
Low pH, low PCO2, and low HCO3 indicates:
no respiratory component to pH disturbance