Anatomy_Concepts_Ch18-20 Flashcards
erythrocytes structural characteristics contribe to respiratory function:
their bioconcave shape provides 30% more surface area than that of spherical cells of the same volume, allowing rapid diffusion of exygen into and out of erythrocytes.<br></br>discounting the water that is present in all cells, erythrocytes are over 97% hemoplobin. without a nucleus or organellse, they are little more than bags of oxygen-carrying molecules.<br></br>erythrocytes lack mitochordria and generate the energy they need by anaerobic mechanisms; therefore, they do not consume any of the oxygen they pick up and are very efficient oxygen transporters
relative abundance of leukocytes
neutrophils (50-70%)<br></br>lymphocytes (25-45%)<br></br>monocytes (3-8%)<br></br>eosinophils (2-4%)<br></br>basophils (.5-1%)
stages of differentiation of blood cells in the bone marrow: effector T cell
hematopoietic stem cell<br></br>lymphoid stem cell<br></br>T lymphocyte<br></br>effector T cell
stages of differentiation of blood cells in the bone marrow: plasma cell
hemotopoietic stem cell<br></br>lymphoind stem cell<br></br>B lymphocyte<br></br>plasma cell
stages of differentiation of blood cells in the bone marrow: platelets
hemotopoietic stem cell<br></br>myloid stem cell<br></br>megakaryoblast<br></br>early megakaryocyte<br></br>late megakaryocyte<br></br>platelets
stages of differentiation of blood cells in the bone marrow: wandering macrophage
hematopoietic stem cell<br></br>myeloid stem cell<br></br>monoblast<br></br>promonocyte<br></br>monocyte<br></br>wandering macrophage
stages of differentiation of blood cells in the bone marrow: neutrophil (granular leukocytes)
hematopoietic stem cell<br></br>myeloid stem cell<br></br>myeloblasts<br></br>promylocites<br></br>neutrophilic myelocyte<br></br>neutrophilic metamyelocyte<br></br>neutrophilic band cell<br></br>neutrophil (granular leukocytes)
stages of differentiation of blood cells in the bone marrow: basophil (granular leukocytes)
hematopoietic stem cell<br></br>myeloid stem cell<br></br>myeloblasts<br></br>promyelocytes<br></br>basophilic myelocyte<br></br>basophilic metamyelocyte<br></br>basophil (granular leukocytes)
stages of differentiation of blood cells in the bone marrow: eosinophil (granular leukocytes)
hematopoetic stem cell<br></br>myeloid stem cell<br></br>myeloblasts<br></br>promyelocytes<br></br>acidophilic myelocyte<br></br>acidophilic metamyelocyte<br></br>eosinophil (granular leukocytes)
stages of differentiation of blood cells in the bone marrow: erythrocyte
hemotopoietic stem cell<br></br>myeloid stem cell<br></br>proerythroblast<br></br>basophilic erythroblast<br></br>polychromatic erythroblast<br></br>orthochromatic erythroblast<br></br>reticulocyte<br></br>erythrocyte
“leukocytes, Wright’s stain”
neutrophil: multilobed nucleus, pale red and blue cytoplastmic granules<br></br>eosinophil: bilobed nucleus, red cytoplasmic granules<br></br>basophil: bilobed nucleus, purplish black cytoplasmic granules<br></br>lymphocyte (small): large spherical nucleus, thin rim of pale blue cytoplasm<br></br>monocyte: kidney-shaped nucleus, abundant pale blue cytoplasm
age-related changes that affect the heart include the following:
hardening and thickening of the cusps of the heart valves.<br></br>decline in cardiac reserve.<br></br>fibrosis of cardiac muscle.
heart development
(days are approximate)<br></br>a) day 20: endothelial tubes begin to fuse<br></br>b) day 22: heart starts pumping<br></br>c) day 24: heart continues to elongate and starts to bend<br></br>d) day 28: bending continues as ventricle moves caudally and atrium moves cranially<br></br>e) day 35: bending is complete
the intrinsic conducting system of the heart
1) the sinoatrial (SA) node (pacemaker) generates impulses<br></br>2) the impulses pause (0.1 sec) at the atroventricular (AV) node<br></br>3) the atrioventricular (AV) bundle connects the atria to the ventricles<br></br>4) the bundle branches conduct the impulses through the interventricular septum<br></br>5) the subendocardial conducting network stimulates the contractile cells of both ventricles
AV valves open; atrial pressure greater than ventricular pressure
1) blood returning to the heart fills atria, pressing tagainst the AV valves. the increased pressure forces AV valves open.<br></br>2) as ventricles fill, AV valva flaps hang limply into ventricles.<br></br>3) atria contract, forcing additional blood into ventricles.