Calculus Midterm 4 Flashcards
Polar Coordinate System
The location of a point described by its distance from a fixed point and angular direction
What is the fixed point called?
Pole
Polar Axis
Ray emanating from pole
Rectangular to coordinate equations
x = rcos(ϴ)
y = rsin(ϴ)
Polar to rectangular coordinates
r^2 = x^2 + y^2
tan(ϴ) = y/x
Equation for line in a polar function
ϴ = k
Equation for circles in a polar function
Centered at
Origin: r = k
x-axis: r = kcos(ϴ)
y-axis: r = ksin(ϴ)
Calculator Function for graphing points of intersections polar
Polar
Simul
Graph functions
Adjust window settings
When do polar functions intersect?
ONLY if the ϴ and r are the same at that point
How to find points of intersection in polar functions
Set two equations equal to each other and solve for ϴ
sin(ϴ) = 1/2
(1/2, pi/6), (1/2, 5pi/6)
Derivative of Polar Functions: dr/dϴ
The rate of change of radius as the angle changes
Derivative of Polar Functions: dy/dx
Slope of the polar curve in the xy-plane
Derivative of a polar function
How to find dy/dx of r = f(ϴ)
- find rectangular coordinates (x and y)
- Replace r with f(ϴ)
- find dx/dϴ and dy/dϴ
4/ find dy/dx
Arc Length
dL = sqrt((dx/dt)^2 + (dy/dt)^2) dt
Arc Length if ϴ is a parametric
r^2 + (dr/dϴ)^2
Area of a polar curve
dA = 1/2r^2dϴ