WK1 L__A05 - Mehrachsige Beanspruchung Flashcards

1
Q

Was ist die Aufgabe der Festigkeitsberechnung?

A

Erfassung der Beanspruchung des Bauteils und Vergleich mit seiner Widerstandsfähigkeit

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Woraus setzt sich die Widerstandsfähigkeit eines Bauteiles zusammen?

A
  • Festigkeitseigenschaften des Werkstoffes<div>- Gestalt + Abmessungen des Bauteils</div>
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Welche ökonomische Forderung soll durch die Festigkeitsberechnung erfüllt werden?

A

Geringster Materialaufwand bei größtmöglicher Betriebssicherheit

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Welche Schritte umfasst die Festigkeitsberechnung?

A

“<div>1. Bestimmung der äußeren Belastung nach Art, Größe, Richtung und zeitlichen Verlauf</div><div>2. Bestimmung der inneren Spannung aus der Belastung und der Gestalt + Abmessungen des Bauteils</div><div>3. Festlegung der zulässigen Spannung auf Grundlage der Werkstoffkennwerte, dem Sicherheitsbeiwert und der Art des möglichen Versagens (muss abgeschätzt wrden)</div><div>4. Vergleich der berechneten inneren Spannungen und der zulässigen Spannung</div><img></img>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Welche Bedingung muss in der Festigkeitsberechnung erfüllt sein?

A

σ ≤ σzul

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Wie viele Spannungsgrößen sind nötig, damit ein allgemeiner Spannungszustand vollständig bestimmt ist?

A
  • Drei Normalspannungen<div>- Drei Schubspannungen</div>
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Wie lautet die Notation von Normalspannungen?

A

”- σxgreift senkrecht zu der Ebene mit x = const. an<div>- σygreift senkrecht zu der Ebene mit y = const. an</div><div>- σzgreift senkrecht zu der Ebene mit z = const. an</div><div><img></img><br></br></div>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Wie lautet die Notation von Schubspannungen?

A

”- Erster Index: Lage der Schnittmitfläche mit Index = const.<div>- Zweiter Index: Richtung der Schubspannung</div><div><br></br></div><div>z.B. τxyliegt auf der Schnittfläche mit x = const. und in Richtung der y-Achse</div><div><img></img><br></br></div>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Was rufen Normalspannungen hervor?

A

Dehnungen bzw. Stauchungen

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Was wird durch Schubspannungen hervorgerufen?

A

Scherungen

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Was ergibt sich aus der Gleichgewichtslage des infinitesimalen Körperelementes für die Schubspannungen?

A
  • Schubspannungen, die in benachbarten, zueinander senkrechten Schnittflächen liegen und deren Wirkungslinien sich schneiden, treten stets paarweise auf d.h. |τxy|=|τyx|<div>- Solche zugeordneten Schubspannungen zeigen entweder beide auf die gemeinsame Würfelkante oder von ihr weg</div>
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Wovon hängen die angreifen Normal- und Schubspannungen eines Körpers ab?

A

Von der Lage seiner Schnittfächen im Raum

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Was sind die sogenannten Hauptspannungen?

A

”- Für jeden Spannungszustand existieren drei paarweise senkrechte Richtungen, in denen die Schubspannungen verschwinden und die Normalspannungen maximal werden<div>- Sog. Hauptspannungsrichtungen</div><div>- Schubspannungen = 0</div><div>- Beispiel für den ebenen Zustand:</div><div><img></img><br></br></div>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Was ist bei der Notierung der Hauptspannungen zu beachten?

A

σI≥ σII≥ σIII

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Was ist ein räumlicher Spannungszustand?

A

Wenn alle drei Hauptspannungen von 0 verschieden sind.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Wann handelt es sich um einen ebenen Spannungszustand?

A

Wenn eine der drei Hauptspannungen verschwindet.

17
Q

Was ist das Problem mit Werkstoffkennwerten bei mehrachsiger Beanspruchung?

A

Werkstoffkennwerte für mehrachsige Beanspruchungen stehen i.d.R. nicht zur Verfügung, sondern sind nur für eindimensionale Fälle vorhanden (Zugversuch, Druckversuch, Biegeversuch, …)

18
Q

Was ist die Idee hinter Anstrengungshypothesen?

A
  • Den komplexen mehrachsigen Zustand auf einen für die Festigkeit äquivalenten, fiktiv einachsigen Spannungszustand zurückzuführen<div>- Berechnung einer Vergleichsspannung σVaus den Hauptspannungen σIIIIII</div><div>- Vergleich der Vergleichsspannung mit der ermittelten zulässigen Spannung für das Bauteil mit σV≤ σzul</div>
19
Q

Worin unterscheiden sich die einzelnen Anstrengungshypothesen und welche 3 sind heutzutage gebräuchlich?

A
  • In der Erklärung für das Versagen des Werkstoffes<div>- Jede Hypothese hat daher ihren eigenen Anwendungsbereich<br></br><div><div><br></br></div><div>1.) Normalspannunshypothese (NH)</div><div>2.) Schubspannungshypothese (SH)</div><div>3.) Gestaltänderungsenergiehypothese (GEH)</div></div></div>
20
Q

Wovon ist die Versagenart abhängig?

A
  • Art der Beanspruchung<div>- Zeitlicher Verlauf der Beanspruchung</div><div>- Verformbarkeit vor Eintritt des Bruches</div>
21
Q

Was sagt die Normalspannungshypothese aus?

A
  • Für die Beanspruchbarkeit eines Bauteiles ist allein die betragsmäßig größte Normalspannung entscheidend<div><br></br></div><div>σV= |σ|max</div>
22
Q

Wie vollzieht sich das Versagen durch Normalspannungen?

A
  • Werkstofftrennung senkrecht zur Richtung der größten Hauptspannung: Verformungloser Trennbruch oder Dauberbruch<div><br></br></div><div>- Zügige Beanspruchung: Wenn σI> Rm</div><div>- Schwingende Beanspruchung: Wenn σI> σA</div>
23
Q

Wann kann die Normalspannungshypothese angewandt werden und für welche Materialien?

A
  • Wenn mit einem Bruch ohne plastische Verformung zu rechnen ist<div>- Bei spröden Materialien mit geringen bis nicht vorhandenen oder blockierten Verformungsmöglichkeiten z.B. für Grauguss geringer Festigkeit</div>
24
Q

Was ist die Idee hinter der Schubspannungshypothese?

A

Für das Versagen eines Bauteiles ist die betragsmäßig größte auftretende Schubspannung maßgebend.

25
Q

Wie kommt man auf die Spannung zur Berechnung der Schubspannungshypothese?

A

Es gilt der Zusammenhang:<div><br></br></div><div>[$$]\tau_{max} = \frac{\sigma_{max} - \sigma_{min}}{2}[/$$]<br></br></div><div><br></br></div><div>mit dem Zusammenhang K = 2 τmax= σI(zugehörige Normalspannung zur Schubspannung - zulässige Spannung ist als Hauptspannung ausgelegt) gilt:</div><div><br></br></div><div>[$$]\sigma_V = K = \sigma_{max} - \sigma_{min} = \sigma_I - \sigma_{III}[/$$]<br></br></div>

26
Q

Welche Vorstellung steht hinter der Schubspannungshypothese und für welche Werkstoffe ist sie anwendbar?

A
  • Plastische Formänderung aufgrund von Abgleitvorgängen im Kristallgitter<div>- Werkstoff versagt somit durch plastisches Fließen</div><div>- Quasi-statische Belastung: Wenn σV≥ Re</div><div>- Periodische Bewegung: Wenn σV ≥ σA</div><div>- Anwendbar für zähe Werkstoffe</div>
27
Q

Welche Idee steckt hinter der Gestaltänderungsenergiehypothese und welche Versagensart ist hier entscheidend?

A
  • Jeder Werkstoff hat nur eine begrenzte Speicherfähigkeit für die zur Gestaltänderung erforderliche elastische Energie<div>- Ist diese erschöpft kommt es zu plastischen Scherungen</div><div>- Quasi-statische Belastung: Wenn σV> Re</div><div>- Periodische Belastung: Wenn σV> σA</div>
28
Q

Wie lässt sich der Grenzwert für die Gestaltänderungsenergiehypothese berechnen?

A
  • Mit Normalspannungen:<div><br></br></div><div>[$$]\sigma_V = \frac{1}{\sqrt{2}} \cdot \sqrt{(\sigma_I - \sigma_{II})^2+(\sigma_{II} - \sigma_{III})^2+(\sigma_{III} - \sigma_{I})^2}[/$$]</div><div><br></br></div><div>- Mit Schubspannungen:</div><div><br></br></div><div>[$$]\sigma_V = \sqrt{2} \cdot \sqrt{\tau_I^2 + \tau_{II}^2 + \tau_{III}^2}[/$$]<br></br></div>
29
Q

Für welche Werkstoffe wird die GEH angewandt?

A

Da sie wie die SH vom Versagen aufgrund plastischer Scherungen ausgeht, wird sie ebenfalls für zähe Werkstoffe angewandt.

30
Q

Wie sehr unterscheiden sich die SH und die GEH in ihren Ergebnissen?

A

[$$]1 \leq \frac{\sigma_{vSH}}{\sigma_{vGEH}} \leq 1,155[/$$]<div><br></br></div><div>d.h. maximal um 15%, wobei immer</div><div><br></br></div><div>[$$]\sigma_{vSH} \geq \sigma_{vGEH} [/$$]</div>

31
Q

Warum verwendet man häufiger die GEH als die SH?

A
  • Einfacheres Rechnen<div>- Mit der GEH begeht man allenfalls einen Fehler zur sicheren Seite</div>
32
Q

Wie groß ist der maximale Unterschied zwischen SH und GEH?

A

Maximal 15 %

33
Q

Welche Vorgangsweise wählt man, wenn man einen Spannungszustand eines Behälters bewerten will?

A
  • Spannungen berechnen<div>- Hauptachsentransformation um auf Hauptspannungen zu kommen</div><div>- Berechnung der Vergleichsspannung aus den Hauptspannungen</div><div>- Vergleich mit der zulässigen Spannung</div>