Amazon EMR | Managing your Cluster Flashcards
What is different about the AWS GovCloud (US) region?
Managing your Cluster
Amazon EMR | Analytics
The AWS GovCloud (US) region is designed for US government agencies and customers. It adheres to US ITAR requirements. In GovCloud, EMR does not support spot instances or the enable-debugging feature. The EMR Management Console is not yet available in GovCloud.
How does Amazon EMR use Amazon EC2 and Amazon S3?
Managing your Cluster
Amazon EMR | Analytics
Customers upload their input data and a data processing application into Amazon S3. Amazon EMR then launches a number of Amazon EC2 instances as specified by the customer. The service begins the cluster execution while pulling the input data from Amazon S3 using S3N protocol into the launched Amazon EC2 instances. Once the cluster is finished, Amazon EMR transfers the output data to Amazon S3, where customers can then retrieve it or use as input in another cluster.
How is a computation done in Amazon EMR?
Managing your Cluster
Amazon EMR | Analytics
Amazon EMR uses the Hadoop data processing engine to conduct computations implemented in the MapReduce programming model. The customer implements their algorithm in terms of map() and reduce() functions. The service starts a customer-specified number of Amazon EC2 instances, comprised of one master and multiple slaves. Amazon EMR runs Hadoop software on these instances. The master node divides input data into blocks, and distributes the processing of the blocks to the slave node. Each slave node then runs the map function on the data it has been allocated, generating intermediate data. The intermediate data is then sorted and partitioned and sent to processes which apply the reducer function to it. These processes also run on the slave nodes. Finally, the output from the reducer tasks is collected in files. A single “cluster” may involve a sequence of such MapReduce steps.
How reliable is Amazon EMR?
Managing your Cluster
Amazon EMR | Analytics
Amazon EMR manages an Amazon EC2 cluster of compute instances using Amazon’s highly available, proven network infrastructure and datacenters. Amazon EMR uses industry proven, fault-tolerant Hadoop software as its data processing engine. Hadoop splits the data into multiple subsets and assigns each subset to more than one Amazon EC2 instance. So, if an Amazon EC2 instance fails to process one subset of data, the results of another Amazon EC2 instance can be used.
How quickly will my cluster be up and running and processing my input data?
Managing your Cluster
Amazon EMR | Analytics
Amazon EMR starts resource provisioning of Amazon EC2 On-Demand instances almost immediately. If the instances are not available, Amazon EMR will keep trying to provision the resources for your cluster until they are provisioned or you cancel your request. The instance provisioning is done on a best-efforts basis and depends on the number of instances requested, time when the cluster is created, and total number of requests in the system. After resources have been provisioned, it typically takes fewer than 15 minutes to start processing.
In order to guarantee capacity for your clusters at the time you need it, you may pay a one-time fee for Amazon EC2 Reserved Instances to reserve instance capacity in the cloud at a discounted hourly rate. Like On-Demand Instances, customers pay usage charges only for the time when their instances are running. In this way, Reserved Instances enable businesses with known instance requirements to maintain the elasticity and flexibility of On-Demand Instances, while also reducing their predictable usage costs even further.
Which Amazon EC2 instance types does Amazon EMR support?
Managing your Cluster
Amazon EMR | Analytics
Amazon EMR supports 12 EC2 instance types including Standard, High CPU, High Memory, Cluster Compute, High I/O, and High Storage. Standard Instances have memory to CPU ratios suitable for most general-purpose applications. High CPU instances have proportionally more CPU resources than memory (RAM) and are well suited for compute-intensive applications. High Memory instances offer large memory sizes for high throughput applications. Cluster Compute instances have proportionally high CPU with increased network performance and are well suited for High Performance Compute (HPC) applications and other demanding network-bound applications. High Storage instances offer 48 TB of storage across 24 disks and are ideal for applications that require sequential access to very large data sets such as data warehousing and log processing. See the EMR pricing page for details on available instance types and pricing per region.
How do I select the right Amazon EC2 instance type?
Managing your Cluster
Amazon EMR | Analytics
When choosing instance types, you should consider the characteristics of your application with regards to resource utilization and select the optimal instance family. One of the advantages of Amazon EMR with Amazon EC2 is that you pay only for what you use, which makes it convenient and inexpensive to test the performance of your clusters on different instance types and quantity. One effective way to determine the most appropriate instance type is to launch several small clusters and benchmark your clusters.
How do I select the right number of instances for my cluster?
Managing your Cluster
Amazon EMR | Analytics
The number of instances to use in your cluster is application-dependent and should be based on both the amount of resources required to store and process your data and the acceptable amount of time for your job to complete. As a general guideline, we recommend that you limit 60% of your disk space to storing the data you will be processing, leaving the rest for intermediate output. Hence, given 3x replication on HDFS, if you were looking to process 5 TB on m1.xlarge instances, which have 1,690 GB of disk space, we recommend your cluster contains at least (5 TB * 3) / (1,690 GB * .6) = 15 m1.xlarge core nodes. You may want to increase this number if your job generates a high amount of intermediate data or has significant I/O requirements. You may also want to include additional task nodes to improve processing performance. See Amazon EC2 Instance Types for details on local instance storage for each instance type configuration.
How long will it take to run my cluster?
Managing your Cluster
Amazon EMR | Analytics
The time to run your cluster will depend on several factors including the type of your cluster, the amount of input data, and the number and type of Amazon EC2 instances you choose for your cluster.
If the master node in a cluster goes down, can Amazon EMR recover it?
Managing your Cluster
Amazon EMR | Analytics
No. If the master node goes down, your cluster will be terminated and you’ll have to rerun your job. Amazon EMR currently does not support automatic failover of the master nodes or master node state recovery. In case of master node failure, the AWS Management console displays “The master node was terminated” message which is an indicator for you to start a new cluster. Customers can instrument check pointing in their clusters to save intermediate data (data created in the middle of a cluster that has not yet been reduced) on Amazon S3. This will allow resuming the cluster from the last check point in case of failure.
If a slave node goes down in a cluster, can Amazon EMR recover from it?
Managing your Cluster
Amazon EMR | Analytics
Yes. Amazon EMR is fault tolerant for slave failures and continues job execution if a slave node goes down. Amazon EMR will also provision a new node when a core node fails. However, Amazon EMR will not replace nodes if all nodes in the cluster are lost.
Can I SSH onto my cluster nodes?
Managing your Cluster
Amazon EMR | Analytics
Yes. You can SSH onto your cluster nodes and execute Hadoop commands directly from there. If you need to SSH into a slave node, you have to first SSH to the master node, and then SSH into the slave node.
Can I use Microsoft Windows instances with Amazon EMR?
Managing your Cluster
Amazon EMR | Analytics
At this time, Amazon EMR supports Debian/Lenny in 32 and 64 bit modes. We are always listening to customer feedback and will add more capabilities over time to help our customers solve their data crunching business problems.
What is Amazon EMR Bootstrap Actions?
Managing your Cluster
Amazon EMR | Analytics
Bootstrap Actions is a feature in Amazon EMR that provides users a way to run custom set-up prior to the execution of their cluster. Bootstrap Actions can be used to install software or configure instances before running your cluster. You can read more about bootstrap actions in EMR’s Developer Guide.
How can I use Bootstrap Actions?
Managing your Cluster
Amazon EMR | Analytics
You can write a Bootstrap Action script in any language already installed on the cluster instance including Bash, Perl, Python, Ruby, C++, or Java. There are several pre-defined Bootstrap Actions available. Once the script is written, you need to upload it to Amazon S3 and reference its location when you start a cluster. Please refer to the “Developer’s Guide”: http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/ for details on how to use Bootstrap Actions.