Amazon Athena | When to Use Athena vs Other Big Data Services Flashcards
What regions is Amazon Athena available in?
When to Use Athena vs Other Big Data Services
Amazon Athena | Analytics
Please refer to Regional Products and Services for details of Amazon Athena service availability by region.
What is the difference between Amazon Athena, Amazon EMR, and Amazon Redshift?
When to Use Athena vs Other Big Data Services
Amazon Athena | Analytics
Query services like Amazon Athena, data warehouses like Amazon Redshift, and sophisticated data processing frameworks like Amazon EMR, all address different needs and use cases. You just need to choose the right tool for the job. Amazon Redshift provides the fastest query performance for enterprise reporting and business intelligence workloads, particularly those involving extremely complex SQL with multiple joins and sub-queries. Amazon EMR makes it simple and cost effective to run highly distributed processing frameworks such as Hadoop, Spark, and Presto when compared to on-premises deployments. Amazon EMR is flexible - you can run custom applications and code, and define specific compute, memory, storage, and application parameters to optimize your analytic requirements. Amazon Athena provides the easiest way to run ad-hoc queries for data in S3 without the need to setup or manage any servers.
When should you use a full featured enterprise data warehouse, like Amazon Redshift vs. a query service like Amazon Athena?
When to Use Athena vs Other Big Data Services
Amazon Athena | Analytics
A data warehouse like Amazon Redshift is your best choice when you need to pull together data from many different sources – like inventory systems, financial systems, and retail sales systems – into a common format, and store it for long periods of time, to build sophisticated business reports from historical data; then a data warehouse like Amazon Redshift is the best choice.
Data warehouses collect data from across the company and act as the “single source of truth” for report generation and analysis. Data warehouses pull data from many sources, format and organize it, store it, and support complex, high speed queries that produce business reports. The query engine in Amazon Redshift has been optimized to perform especially well on this use case - where you need to run complex queries that join large numbers of very large database tables. TPC-DS is a standard benchmark designed to replicate this use case, and Redshift runs these queries up to 20x faster than query services that are optimized for unstructured data. When you need to run queries against highly structured data with lots of joins across lots of very large tables, you should choose Amazon Redshift.
By comparison, query services like Amazon Athena make it easy to run interactive queries against data directly in Amazon S3 without worrying about formatting data or managing infrastructure. For example, Athena is great if you just need to run a quick query on some web logs to troubleshoot a performance issue on your site. With query services, you can get started fast. You just define a table for your data and start querying using standard SQL.
You can also use both services together. If you stage your data on Amazon S3 before loading it into Amazon Redshift, that data can also be registered with and queried by Amazon Athena.
When should I use Amazon EMR vs. Amazon Athena?
When to Use Athena vs Other Big Data Services
Amazon Athena | Analytics
Amazon EMR goes far beyond just running SQL queries. With EMR you can run a wide variety of scale-out data processing tasks for applications such as machine learning, graph analytics, data transformation, streaming data, and virtually anything you can code. You should use Amazon EMR if you use custom code to process and analyze extremely large datasets with the latest big data processing frameworks such as Spark, Hadoop, Presto, or Hbase. Amazon EMR gives you full control over the configuration of your clusters and the software installed on them.
You should use Amazon Athena if you want to run interactive ad hoc SQL queries against data on Amazon S3, without having to manage any infrastructure or clusters.