Problem 10 Flashcards

1
Q

What are some of the complications for thromboembolie veineuse

A
postthrombotic syndrome (chronic venous insufficency, damage to the valves -> swelling and aching) 
pulmonary hypertension
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

What is the pathophysiology

A
  • inflammation and platelet activation: Virchow’s triad leads to recruitment of activated platelets, which release microparticles. These microparticles contain proinflammatory mediators that bind neutrophils, stimulating them to release their nuclear material and form web-like extracellular networks called neutrophil extracellular traps. These prothrombotic networks contain histones that stimulate platelet aggregation and promote platelet-dependent thrombin generation. Venous thrombi form and flourish in an environment of stasis, low oxygen tension, and upregulation of proinflammatory genes.
  • prothrombotic states: mutations and other risk factors
  • embolization: deep venous thrombi detach -> vena cava -> right atrium -> right ventricle -> the pulmonary arterial circulation, thereby causing acute PE. Paradoxically, these thrombi occasionally embolize to the arterial circulation through a patent foramen ovale or atrial septal defect. Many patients with PE have no evidence of DVT because the clot has already embolized to the lungs.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

What is the Virchow triad

A

venous stasis, hypercoagulability, and endothelial injury

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

What are some of the genetic risk factors

A

The two most common autosomal dominant genetic mutations are factor V Leiden, activated protein C (which inactivates clotting factors V and VIII), and the prothrombin gene mutation, which increases the plasma prothrombin concentration. Antithrombin, protein C, and protein S are naturally occurring coagulation inhibitors. Deficiencies of these inhibitors are associated with VTE but are rare.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

What are some of the auto-immune syndromes that are risk factors

A

Antiphospholipid antibody syndrome is the most common acquired cause of thrombophilia and is associated with venous or arterial thrombosis.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

What are some of the risk factors

A

cancer, obesity, cigarette smoking, systemic arterial hypertension, chronic obstructive pulmonary disease, chronic kidney disease, blood transfusion, long-haul air travel, air pollution, estrogen-containing contraceptives, pregnancy, postmenopausal hormone replacement, surgery, and trauma. Inflammation predisposes to thrombosis, and conditions such as psoriasis and inflammatory bowel disease have become recognized risk factors of VTE. Sedentary lifestyle.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

What happens when a blood clot is in the lungs

A

The most common gas exchange abnormalities are arterial hypoxemia and an increased alveolar-arterial O2 tension gradient, which represents the inefficiency of O2 transfer across the lungs. Anatomic dead space increases because breathed gas does not enter gas exchange units of the lung. Physiologic dead space increases because ventilation to gas exchange units exceeds venous blood flow through the pulmonary capillaries.

Other pathophysiologic abnormalities include:

  • Increased pulmonary vascular resistance due to vascular obstruction or platelet secretion of vasoconstricting neurohumoral agents such as serotonin. Release of vasoactive mediators can produce ventilation-perfusion mismatching at sites remote from the embolus, thereby accounting for discordance between a small PE and a large alveolar-arterial O2 gradient.
  • Impaired gas exchange due to increased alveolar dead space from vascular obstruction, hypoxemia from alveolar hypoventilation relative to perfusion in the non-obstructed lung, right-to-left shunting, or impaired carbon monoxide transfer due to loss of gas exchange surface.
  • Alveolar hyperventilation due to reflex stimulation of irritant receptors.
  • Increased airway resistance due to constriction of airways distal to the bronchi.
  • Decreased pulmonary compliance due to lung edema, lung hemorrhage, or loss of surfactant.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

What happens to the heart

A

Pulmonary artery obstruction and neurohumoral mediators cause a rise in pulmonary artery pressure and in pulmonary vascular resistance. When RV wall tension rises, RV dilation and dysfunction ensue, with release of the cardiac biomarker, brain natriuretic peptide. The interventricular septum bulges into and compresses an intrinsically normal left ventricle (LV). Diastolic LV dysfunction reduces LV distensibility and impairs LV filling. Increased RV wall tension also compresses the right coronary artery, limits myocardial oxygen supply, and precipitates right coronary artery ischemia and RV microinfarction, with release of cardiac biomarkers such as troponin. Underfilling of the LV may lead to a fall in LV cardiac output and systemic arterial pressure, with consequent circulatory collapse and death.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

What are the indicators of massive PE

A

Dyspnea, syncope, hypotension, and cyanosis

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

What are the characteristics of submassive PE

A

RV dysfunction despite normal systemic arterial pressure. The combination of right heart failure and release of cardiac biomarkers indicates a high risk of clinical deterioration.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Symptoms and signs of PE

A

dyspnee

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Symptoms of TVP

A

cramps in the leg

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Scors used to diagnose

A

geneva score

wells score

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

When do we use D-dimeres

A

if low or intermediate risk of PE

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Diagnostics differentiels de TVP

A

Not all leg pain is due to DVT. Sudden, severe calf discomfort suggests a ruptured Baker’s cyst. Fever and chills usually herald cellulitis rather than DVT. Physical findings, if present, may consist only of mild palpation discomfort in the lower calf. However, massive DVT often presents with marked thigh swelling, tenderness, and erythema. Recurrent left thigh edema especially in young women raises the possibility of May-Thurner Syndrome, with right proximal iliac artery compression of the left proximal iliac vein. However, if a leg is diffusely edematous, DVT is unlikely. More probable is an acute exacerbation of venous insufficiency due to postthrombotic syndrome. Upper extremity venous thrombosis may present with asymmetry in the supraclavicular fossa or in the circumference of the upper arms.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Diagnostics differentiels d’une embolie pulmonaire

A

Pulmonary infarction usually indicates a small PE. This condition is exquisitely painful because the thrombus lodges peripherally, near the innervation of pleural nerves. Nonthrombotic PE etiologies include fat embolism after pelvic or long bone fracture, tumor embolism, bone marrow, and air embolism. Cement embolism and bony fragment embolism can occur after total hip or knee replacement. Intravenous drug users may inject themselves with a wide array of substances that can embolize, such as hair, talc, and cotton. Amniotic fluid embolism occurs when fetal membranes leak or tear at the placental margin.

17
Q

Examens complementaires non-imaging

A

BLOOD TESTS
The quantitative plasma D-dimer ELISA rises in the presence of DVT or PE because of the breakdown of fibrin by plasmin. Elevation of D-dimer indicates endogenous although often clinically ineffective thrombolysis. A normal D-dimer is a useful “rule out” test.

ELEVATED CARDIAC BIOMARKERS
Serum troponin and plasma heart-type fatty acid–binding protein levels increase because of RV microinfarction. Myocardial stretch causes release of brain natriuretic peptide or NT-pro-brain natriuretic peptide.

ELECTROCARDIOGRAM
The most frequently cited abnormality, in addition to sinus tachycardia, is the S1Q3T3 sign: an S wave in lead I, a Q wave in lead III, and an inverted T wave in lead III. RV strain and ischemia cause the most common abnormality, T-wave inversion in leads V1 to V4.

18
Q

What are some of the non invasive imaging

A

VENOUS ULTRASONOGRAPHY
Ultrasonography of the deep-venous system. With acute DVT, the vein loses its compressibility because of passive distention by acute thrombus. The diagnosis of acute DVT is even more secure when thrombus is directly visualized.

CHEST CT
CT of the chest with intravenous contrast is the principal imaging test for the diagnosis of PE. The CT scan also provides an excellent four-chamber view of the heart. RV enlargement on chest CT indicates an increased likelihood of death. pelvic and proximal leg DVT also can be diagnosed.

LUNG SCANNING
Lung scanning has become a second-line diagnostic test for PE, used mostly for patients who cannot tolerate intravenous contrast. Small particulate aggregates of albumin labeled with a gamma-emitting radionuclide are injected intravenously and are trapped in the pulmonary capillary bed. The perfusion scan defect indicates absent or decreased blood flow, possibly due to PE.

19
Q

What is the treatment for TVP

A

PRIMARY THERAPY
consists of clot dissolution with pharmacomechanical therapy that usually includes low-dose catheter-directed thrombolysis. This approach is reserved for patients with extensive DVT.

SECONDARY PREVENTION
Anticoagulation or placement of an inferior vena cava filter. For patients with swelling of the legs when acute DVT is diagnosed, below-knee graduated compression stockings may be prescribed, usually 30–40 mmHg, to lessen patient discomfort. They should be replaced every 3 months because they lose their elasticity.

20
Q

What is the ttt for PE

A

ANTICOAGULATION
There are three major strategies: (1) the classical but waning strategy of parenteral anticoagulation with unfractionated heparin (UFH), low-molecular-weight heparin (LMWH), or fondaparinux “bridged” to warfarin, (2) parenteral therapy switched after 5 days to a novel oral anticoagulant such as dabigatran (a direct thrombin inhibitor) or edoxaban (an anti-Xa agent), or (3) oral anticoagulation monotherapy with rivaroxaban or apixaban (both are anti-Xa agents) with a 3-week or 1-week loading dose, respectively, followed by a maintenance dose without parenteral anticoagulation.

INFERIOR VENA CAVA FILTERS
The two principal indications for insertion of an IVC filter are (1) active bleeding that precludes anticoagulation and (2) recurrent venous thrombosis despite intensive anticoagulation. Prevention of recurrent PE in patients with right heart failure who are not candidates for fibrinolysis and prophylaxis of extremely high-risk patients are “softer” indications for filter placement. The filter itself may fail by permitting the passage of small- to medium-size clots. Large thrombi may embolize to the pulmonary arteries via collateral veins that develop.
Paradoxically, by providing a nidus for clot formation, filters increase the DVT rate, even though they usually prevent PE. Therefore, a common complication is recurrent DVT or caval thrombosis with marked leg swelling.

FIBRINOLYSIS
Successful fibrinolytic therapy rapidly reverses right heart failure and may result in a lower rate of death and recurrent PE by (1) dissolving much of the anatomically obstructing pulmonary arterial thrombus, (2) preventing the continued release of serotonin and other neurohumoral factors that exacerbate pulmonary hypertension, and (3) lysing much of the source of the thrombus in the pelvic or deep leg veins, thereby decreasing the likelihood of recurrent PE.
The preferred systemically administered fibrinolytic regimen is 100 mg of recombinant tissue plasminogen activator (tPA) prescribed as a continuous peripheral intravenous infusion over 2 h.

PULMONARY THROMBOENDARTERECTOMY
To treat chronic thromboembolic pulmonary hypertension.

21
Q

How long should the patients be treated for

A

For DVT isolated to an upper extremity or calf that has been provoked by surgery, trauma, estrogen, or an indwelling central venous catheter or pacemaker, 3 months of anticoagulation usually suffice. For an initial episode of provoked proximal leg DVT or PE, 3–6 months of anticoagulation used to be the classic teaching. However, the EINSTEIN CHOICE study found that patients with provoked VTE derived as great a risk reduction in recurrent VTE with extended duration anticoagulation as patients with unprovoked VTE. For patients with cancer and VTE, prescribe LMWH as monotherapy without warfarin and continue anticoagulation indefinitely unless the patient is rendered cancer-free.

22
Q

How to manage massive PE

A

For patients with massive PE and hypotension, replete volume with 500 mL of normal saline. Additional fluid should be infused with extreme caution because excessive fluid administration exacerbates RV wall stress, causes more profound RV ischemia, and worsens LV compliance and filling by causing further interventricular septal shift toward the LV. Dopamine and dobutamine are first-line inotropic agents for treatment of PE-related shock.
indication to fibrinolysis

23
Q

De quoi depend le risque de MTEV/contraception

A

en fonction de la dose d’œstrogène, du type de CHC utilisé, de facteurs personnels (antécédents familiaux, obésité) et de sa durée d’utilisation

24
Q

Quels types de CHC augmentent le plus le risque de MTEV

A

L’augmentation du risque de MTEV dépend de l’équilibre hormonal de la CHC. D’une manière générale, les formulations progestatives plus récentes (CHC de 3e génération (3G) et autres générations (contenant un progestatif tel que de l’acétate de cyprotérone ou de la drospirénone)) augmentent plus
le risque thrombotique veineux que des formulations plus anciennes, dites de 2e génération (2G) composées d’EE et de lévonorgestrel. En effet, comparés aux 2G, les CHC contenant du désogestrel ou du gestodène (3G) multiplient par environ 1,7 le risque de MTEV.
Un contraceptif récent combine le valérate d’estradiol au dienogest. Les données suggèrent, tant sur le plan biologique (marqueurs d’hémostase) que sur une étude épidémiologique isolée, qu’il confère un risque de MTEV proche de celui des 2G.

25
Q

Rapport entre oestrogenes et risque MTEV

A

Concernant la dose d’œstrogènes, la réduction d’EE de 100 à 50 µg puis à 30 µg a été associée à une diminution du risque thrombotique.

26
Q

Quand deconseiller les CHC

A

-contre-indiquée s’il existe un antécédent personnel de MTEV ou en présence d’une thrombophilie biologique connue
-la présence d’antécédents familiaux de MTEV au premier degré à un âge jeune (< 45 ou 50 ans), est un
facteur de risque suffisamment fort (risque relatif de 3-4)

27
Q

Contraception a base de progestatif

A

pas d’augmentation du risque MTEV

mais intramusculaire si

28
Q

MTEV et ttt du cancer du sein

A

risque MTEV eleve avec tamoxifene et inhibiteur de l’aromatase

29
Q

MTEV et stimulation ovarienne pour procreation

A

Les principaux facteurs de risque de MTEV lors de PMA sont la survenue d’un syndrome d’hyperstimulation ovarienne (SHO) et le début d’une grossesse.
Une thrombose veineuse survient lors d’une grossesse sur 1000 avec un risque multiplié par 4 à 6 après PMA, multiplié par 10 au premier trimestre d’une grossesse obtenue en PMA et par 100 environ en présence d’un SHO. Ce dernier est une complication iatrogène de l’hyperstimulation ovarienne contrôlée dans le cadre d’une PMA. Il est lié à une augmentation de la perméabilité capillaire des séreuses sous l’influence du
VEGF, de l’hCG et d’autres facteurs. Un SHO est
présent dans plus de 70 % des cas de MTEV associées à la PMA, avec une proportion importante de thromboses des membres supérieurs. Afin de réduire l’incidence de SHO, et donc potentiellement aussi celui de MTEV, de nouveaux protocoles de stimulation et modes de déclenchement de l’ovulation ont été mis en place tout en conservant des taux de naissances vivantes similaires aux précédents protocoles :
ceux, dits antagonistes, diminuent le risque de SHO d’environ 40 % par rapport aux premiers dits agonistes. Le déclenchement de l’ovulation est réalisé classiquement par de l’hCG.
Dans le protocole antagoniste, il peut également être réalisé par un agoniste de la GnRH en cas de réponse ovarienne excessive (grâce à l’effet flare-up qui induit un pic de LH et de FSH), ce qui limite le risque de SHO. Le transfert embryonnaire est en général différé avec cryoconservation des embryons. En effet, la phase lutéale est perturbée en cas de déclenchement par agoniste de la GnRH, avec un impact négatif
sur les taux de grossesse. De surcroît, l’hCG endogène d’une grossesse débutante stimulerait les follicules ovariens avec un risque de SHO tardif.

30
Q

MTEV et ttt hormonal de la menopause

A

L’indication principale du traitement hormonal de la ménopause (THM) est la présence d’un syndrome climatérique marqué.
Le THM associe un œstrogène et un progestatif (si l’utérus est présent, afin d’éviter l’hyperplasie endométriale).
L’estradiol naturel par voie transdermique et la progestérone micronisée ne semblent pas augmenter le risque de MTEV contrairement aux œstrogènes par voie orale, aux dérivés norpregnanes et à l’acétate de médroxyprogestérone. Le risque relatif de MTEV chez les utilisatrices d’œstrogènes par voie orale est de l’ordre de 2. Parmi les femmes porteuses
d’une mutation du facteur V Leiden ou du facteur II, le risque de MTEV chez les utilisatrices d’estradiol percutané est similaire à celui des non-utilisatrices. Il est six fois plus élevé chez les utilisatrices d’œstrogènes oraux.

31
Q

ttt si clairance de la créatinine > 30 ml/min

A

a) Fondaparinux (= Arixtra) : posologie :
o < 50 kg -> 5 mg
o 50 – 100 kg -> 7.5 mg
o > 100 kg -> 10 mg
- Pas de contrôle de laboratoire
- Attention : risque d’accumulation si TTT prolongé et clearance de la créatinine entre 30 et 50 ml/min
b) Enoxaparine (= Clexane) : 1 mg/kg 2x/j
- Pas de contrôle de laboratoire, sauf si :
o Poids < 50 kg ou > 100 kg et grossesse : activité anti-Xa après la 3ème ou 4ème dose
o Clairance de la créatinine entre 30 et 50 ml/min : activité anti-Xa 3-5h après la 3ème ou 4ème dose, puis 2x/semaine si TTT prolongé

32
Q

ttt si la clairance de la créatinine < 30 ml/min

A
  • HNF en injection IV continue ou en SC (Calciparine)
  • Contrôles de laboratoire : activité anti-Xa, aPTT, plaquettes
  • Le Fondaparinux est CI. Les HBPM aussi, mais peuvent être utilisées avec les précautions suivantes :
    o Diviser les doses d’enoxaparine (clexane) par 2 : soit 1mg/kg 1x/j, soit 0.5mg/kg 2x/j
    o Contrôler l’activité anti-Xa 3 à 5 heures après la 2ème
    o dose puis au minimum 2x/semaine
    o Faire attention en cas de geste chirurgical (contrôler l’activité anti-Xa avant l’intervention)
33
Q

Introduction des AVK

A
  • Introduits dès que l’anticoagulation parentérale est initiée, mais au plus tôt 3 heures après la première injection. Raison : les protéines C et S sont de courte demi-vie et dépendent de la vitamine K -> risque de les inhiber avant les facteurs de la coagulation (qui ont une demi-vie plus longue)
  • Donner une même dose d’acenocoumarol (Sintrom®) les 2 premiers jours à 20 heures, généralement 3 mg sauf dans les situations suivantes :
    o Age > 70 ans, Quick de départ < 80%, risque hémorragique élevé, maladie hépatique (métastases, etc.) : commencer avec 2 mg pendant 2 jours
    o Traitement antérieur de Sintrom : commencer alors avec les doses habituelles.
  • Contrôler l’INR après les 2 premières doses de Sintrom® :
    o Si INR > 1,8 : diminuer la dose du 3ème jour à 1 mg.
    o Si INR 1,2-1,8 : donner la même dose le 3ème jour
    o Si INR < 1,2 : augmenter légèrement la dose du 3ème jour
  • Recontrôler l’INR le lendemain de la 3ème dose de Sintrom
34
Q

Passage HBPM – AVK

A

1) Garder l’anticoagulation parentérale pendant au minimum 5 jours
2) Arrêt de l’anticoagulation parentérale : qu’après 2 INR thérapeutiques à 24 heures d’intervalle (généralement entre 2,0 et 3,0) ; l’anticoagulation parentérale doit être réintroduite en cas d’INR de nouveau infrathérapeutique les jours suivants
3) En cas d’INR suprathérapeutique dans cet intervalle de 5 jours, diminuer éventuellement légèrement les doses de l’anticoagulation parentérale

35
Q

ACOD

A

rivaroxaban (inhibiteur direct du facteur Xa)
- Possible de commencer directement par un TTT de rivaroxaban si TVP ou EP non massive :
o 15 mg 2x/j pendant 3 semaines puis
o 20 mg 1x/j à prendre avec les repas
- Premier choix sauf : grossesse, poids extrêmes (≤ 50 kg et > 130 kg), IR avec ClCr < 30 ml/min (Cockroft)
o Prudence si : > 80 ans/ ClCr 30 – 50 ml/min/ hépatopathie
- Pas besoin de surveillance spécifique
- Autre ACOD pour traiter la MTEV : apixaban