Intégrales Généralisées Flashcards

1
Q

Qu’appelle-t-on intégrale généralisée dans l’idée ?

A

Intégrale sur I qui n’est plus un segment fermé

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Qu’appelle-t-on fonction continue par morceaux sur un segment ?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Si I est un intervalle quelconque, qu’appelle-t-on fonction continue par morceau sur I ?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Comment note-t-on f à valeurs positives intégrable sur I

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Définir l’intégrale d’une fonction continue par morceau sur un segment

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Qu’appelle-t-on une fonction positive intégrable sur un intervalle I ?
Qu’appelle-t-on son intégrale généralisée ?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Qu’est-ce que la propriété de linéarité de l’intégrale et le critère de comparaison des intégrales des fonctions positives ?

Justif le deuxième

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Établir les résultats de l’intégrale de Riemann en 0

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Établir les résultats de l’intégrale de Riemann en +∞

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Déterminer l’intervalle de définition de la fonction Γ (sans envisager de nombre complexe)

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Définir l’intégrabilité sur IK

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Cette fonction est-elle intégrable sur [1,+∞[ ?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

L’intégrale de Dirichlet est-elle intégrable sur IR*+ ?
Justif

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Que peut-on dire de l’intégrale sur I d’une fonction à valeurs dans IK intégrable sur I ?

A

Elle existe (équivalent de l’absolue convergence)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Qu’appelle-t-on intégrale sur [a,b[ de f dans IK ?

A

(Si elle existe)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Est-ce que la convergence de l’intégrale implique que la fonction est intégrable ?

A

Non : une fonction intégrable est une fonction dont l’intégrale du module converge, pas l’intégrale elle-même !

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Définir la convergence d’une intégrale

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

ln est-elle intégrable sur ]0,1] ? Si oui quelle est son intégrale ?
Justif

A

Il vaut mieux justifier tranquillement que c’est intégrable car -ln(t) est continue sur ]0,1] et est un O(√(t)) en 0, avant de calculer

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Que sont les propriétés de linéarité, positivité et croissance de l’intégrale ?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Qu’est-ce que le caractère défini positif de l’intégrale ?
Justif

À quoi faut-il faire attention ?

A

Il faut que la fonction soit continue, pas par morceaux !

L’intégrale d’une fonction positive et continue est nulle ssi la fonction est nulle

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Qu’est-ce que le théorème de Chasles généralisé ?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

Comment faire une IPP sur un intervalle non fermé ?

A

Faire l’IPP avec x puis passer à la limite

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

Énoncer le théorème de changement de variable pour les intégrales généralisées

A

C1 bijectif

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

À quoi faut-il faire attention lorsqu’on fait un changement de variable ?

A

Préciser : de classe C1, strictement monotone (si généralisé)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

Que vaut la limite de x → x^α × ln(x) en 0 ? Avec α€IN* ?

A

0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

Quelle est la méthode pour déterminer si une fonction est intégrable sur I ?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

Qu’est-ce que le critère de domination ?
Justif

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

Qu’est-ce que le critère d’équivalence ?
Justif

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q

Quel est le théorème qui marche pour les séries mais ne marche pas pour les intégrales ?

A

La divergence grossière : on peut avoir une fonction intégrable dont l’intégrale ne tend pas vers 0 en +∞

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q

Qu’est-ce qu’il faut rajouter pour avoir une sorte de divergence grossière ?
Justif

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

Montrer que f n’est pas intégrable mais que son intégrale converge (sur IR)

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q
A

Alors, f(Σ(k=1 → n+1)(λi.xi)) ≤ Σ(k=1 → n+1)(λi.f(xi)), donc P(n+1) est vraie. ✅

(Pour trouver λn’ et xn’, on sait qu’il faut :

  • λn + λn+1 = λn
  • λn.xn + λn+1.xn+1 = λn’.xn’)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
34
Q

Qu’appelle-t-on le Cesaro continu ?
Justif

A

Si F → λ en +∞,

Alors 1/x × ∫<0→x>(F) → λ en +∞

Démo :

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
35
Q

Quelle est la première chose à faire lorsqu’on traite une intégrale généralisée ?

A

Justifier sur quel intervalle la fonction est continue, et donc trouver là où ça marche pas

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
36
Q

Comment «forcer» la puissance de 1/t pour se ramener à une intégrale de Riemann ?

A

Par IPP, en dérivant du 1/t ou en intégrant du exp(-t) par exemple

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
37
Q

Si on a une fonction dont le signe varie, dont l’intégrale n’est pas absolument convergente, comment déterminer si elle converge ?

A

On fait le DL de la fonction jusqu’à un terme dont l’intégrale est absolument convergente et on regarde la convergence des termes avant. Comme les séries.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
38
Q

Quelle est la deuxième intégrale de référence ?

A

C’est celle de t → exp(-α.t) sur IR+, qui converge si et seulement si α > 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
39
Q

Que peut-on dire de la composée de deux fonctions continues par morceaux ?

A

Rien

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
40
Q

Quelle condition ne faut-il pas oublier pour dire que ∫|f|=0 ⇒ f=0 ?

A

Que |f| est continue, sinon on pourrait avoir un nombre fini de points de discontinuité et la fonction ne serait pas nulle

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
41
Q

À quoi faut-il faire attention lorsqu’on écrit la dérivée de x → ∫<a → x>(f(t).dt) ?

A

C’est x → f(x) et pas x → f(x) - f(a) !

La constante qui varie est justement celle de la primitive, l’autre borne de l’intégrale, le a. On n’a en aucun cas une dérivée à une constante près !

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
42
Q

Comment faire le développement asymptotique d’une fonction ?

A

On trouve l’équivalent, on factorise par cet équivalent, puis on fait des DL

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
43
Q
A

Poser xk(n)*

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
44
Q

Comment montrer qu’une intégrale de fonction positive converge par majoration ?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
45
Q

À quelle condition peut-on dire que lim(fog) = f(lim(g)) en un point a ?

A

Si et seulement si f est continue en : lim(g) en a

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
46
Q

Qu’est-ce que la technique d’«alourdissement du dénominateur» ?

(Ce n’est pas un nomination officielle)

A

Si le dénominateur n’est pas assez grand pour converger (Riemann), on peut faire une IPP pour augmenter artificiellement sa puissance, en s’assurant que le crochet converge (en dérivant du 1/t ou en intégrant du exp(-t) par exemple)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
47
Q

Pourquoi ne faut-il pas être gêné si on a des exp imaginaires dans les intégrales ?

A

Car elles sont de module 1, donc disparaissent lorsqu’on applique le module

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
48
Q

Si on a trouvé k€IN tel que k ≤ x < k + 1, que peut-on conclure, comment ?

A

Par unicité de la partie entière, ⌊x⌋ = k

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
49
Q

Comment montrer qu’une fonction est continue par morceau sur un intervalle I qui n’est pas un segment ?

A

On prend [a,b] avec a < b et on montre que f est continue par morceau sur [a,b]

50
Q

Lorsqu’on cherche l’expression d’une suite/de la limite d’une suite et qu’on ne voit rien d’évident, quelle est la première chose à faire ?

A

Regarder u(n+1)

51
Q

Comment se ramener en 0 pour regarder si x → f(x) est intégrable en a+ ?

A

Si x → f(a+x) est intégrable en 0+ (changement de variable)

52
Q

Définir une subdivision et son pas

53
Q

Définir une subdivision adaptée à une fonction continue par morceau

54
Q

D’où vient le fait que si f et g sont continues par morceaux, f+g et f.g sont continues par morceaux ?

55
Q

Que donne l’hypothèse ∫f = 0, avec f une fonction positive, si on n’ajoute pas l’hypothèse de continuité ?

56
Q

Définir une fonction continue par morceaux sur un intervalle quelconque

57
Q

Une fonction continue par morceaux sur un segment peut-elle diverger ?
Justif

A

Une fonction continue par morceaux sur un segment est bornée.

Chaque restriction est bornée d’après le TBA car continue, on prend le max des bornes.

58
Q

Que peut-on dire de la primitive d’une fonction continue par morceaux ?

59
Q

Que peut-on préciser sur un segment ?

60
Q

Peut-on faire une IPP sur des fonctions continues par morceaux ?
Justif

61
Q

Si α < β, quelles négligeabilités peut-on établir entre x^α et xβ

62
Q

Quelle comparaison peut-on faire entre la puissance et l’exponentielle au voisinage de +∞ ?

63
Q

Quelle comparaison peut-on faire entre le ln et la puissance au voisinage de +∞ ?

64
Q

Quelle comparaison peut-on faire entre le ln et la puissance au voisinage de 0 ?

65
Q

Quelle est la forme utile de la définition de f = Ob(g) ?

66
Q

De quoi dépend uniquement la convergence de l’intégrale ?
Qu’est-ce que cela entraine ?

67
Q

Qu’est-ce que le reste d’une intégrale convergente ? Quelle propriété de l’intégrale permet de le définir ? Quelle propriété vérifie-t-il ?

68
Q

Quelle est l’interprétation de la convergence d’une intégrale impropre (en une borne) en terme de primitive ?
Justif

69
Q

Quelle est l’interprétation d’une intégrale impropre (en deux bornes) en terme de primitive ?

70
Q

Calculer

71
Q

Qu’est-ce que la linéarité de l’intégrale impropre, à quoi faut-il faire attention ?

72
Q

Si f : [a, +∞[, on suppose que l’intégrale de f converge sur [a,+∞[, exprimer l’unique primitive de f qui s’annule en +∞

73
Q

Comment montrer la convergence de l’intégrale d’une fonction positive par une propriété simple sur sa primitive ?
Justif

74
Q

Comment montrer simplement le caractère défini positif de l’intégrale pour une fonction continue ?

A

Ce que donne la fonction positive c’est que pour tout intervalle inclus dans [a,b], l’intégrale est positive et inférieure à celle sur [a,b], donc elle est nulle. Donc F est bien constante

75
Q

Que sont les théorèmes de comparaison pour les intégrales de fonctions positives ?
Justif

76
Q

Comment utiliser les théorèmes sur les intégrales de fonctions positives si f n’est pas positive sur tout l’intervalle I ?

77
Q

Quelles sont les comparaisons utiles avec l’intégrale de Riemann en +∞ ?

78
Q

Quelles sont les comparaisons utiles avec l’intégrale de Riemann en b€IR ?

79
Q

Quel est le corollaire (portant sur les fonctions intégrables) du théorème de comparaison ?

80
Q

Montrer l’intervalle de définition de la fonction Γ d’Euler (sans considérer de nombres complexe)

83
Q

Justif

84
Q

Étudier la convergence selon les valeurs de α et β

85
Q

Montrer que la fonction Γ généralise la factorielle

A

Donc Γ(n+1) = n!

  • IPP pour la relation de récurrence
  • Γ(1) = 1 pour l’initialisation
86
Q

Comment faire lorsqu’on fait une IPP sur une intégrale impropre ?

87
Q

Qu’est-ce que l’intégrale de Gauss ?
Combien vaut-elle ?
(Justif pas)

A

Attention : sur ]-∞, +∞[, sinon on divise par 2

88
Q

Quelle changement d’indice simple permet de se ramener à une intégrale connue ?

A

Avec un changement de variable t = tan(u), on se ramène à une intégrale de Wallis

89
Q

Définir une intégrale semi-convergente et donner l’exemple le plus connu. Comment s’appelle-t-il ?
Justif

A

Pour montrer qu’elle converge, il vaut mieux faire une IPP en intégrant sin(t) et en dérivant 1/t (technique d’alourdissement du dénominateur)

90
Q

Déterminer la valeur, pour α>0

91
Q

Déterminer la valeur

A
  • IPP
  • changement d’indice u = -ln(t)
  • utiliser la fonction gamma d’Euler
92
Q

Pour c≠0, calculer la valeur

93
Q

Calculer la valeur

94
Q

Calculer

95
Q

Donner un exemple de fonction qui tend vers 0 en +∞ mais dont l’intégrale diverge en +∞

96
Q

Donner un exemple de fonction f telle que f(t) = o+∞(1/t) et son intégrale ne converge pas

A

Il faut o(1/tα), avec α>1.

(En fait O(1/tα) suffit)

97
Q

Que peut-on dire d’une fonction positive, décroissante, dont l’intégrale converge ?
Justif

98
Q

Quel est le critère de convergence d’une fonction de classe C1 faisant intervenir les intégrales à paramètres ?
Justif

99
Q

Montrer que f converge vers 0

100
Q

Justif

101
Q

Si f est continue, comment peut-on préciser l’inégalité triangulaire sur les intégrales ?

A

Il y a égalité ssi f est de signe constant

102
Q

Justif

A

C’est souvent ça qu’on utilise pour montrer qu’un produit est définit sachant que les deux carrés le sont

103
Q

Justif

104
Q

Justif

105
Q

Justif

106
Q

Quelle est la valeur de l’intégrale de Dirichlet ?

107
Q

Justifier que son intégrale est semi-convergente

108
Q

Qu’est-ce que le théorème de Cesaro en continu ?
Justif

109
Q

Que signifie az, avec z€ℂ ?

A

az = aRe(z) × ai.Im(z)

110
Q

Montrer que sin(t)/t n’est pas intégrable

A

On prend le diagramme de sin(t)/t, on le met en valeur absolue, et on somme les bosses

111
Q

Comment retenir les expressions de cos et sin en fonction de t = tan(t/2) ?

A

Ce sont les mêmes que les coefficients de réflexion en amplitude

112
Q

Montrer la convergence de l’intégrale puis calculer sa valeur (intégrale d’Euler)

113
Q

Montrer l’existence de cette intégrale et calculer sa valeur

A

Il faut l’exprimer comme une série

115
Q

Comment montrer que :

A
  • Écrire (1 + x/n)n sous forme exponentielle de ln de …
  • Faire un DL
116
Q

Qu’est-ce que l’inégalité de Jensen ?
Comment la montre-t-on ?

A

On la montre par récurrence, en bidouillant un xn~ en fonction de xn et x(n+1) et un λn~ en fonction de λn et λ(n+1), et en vérifiant que toutes les hypothèses de Pn sont bien vérifiées

117
Q

Comment montrer que l’intégrale de Dirichlet converge ?

A
  • Poser x€IR*+
  • Faire une IPP avec u = 1 - cos(t) et v = 1/t, qui sont de classe C1 sur [1/x , x]
  • Faire tendre x vers +∞
118
Q

Quelle est la valeur de Γ(1/2) ?
Justif

119
Q

Si on ne trouve pas de changement de variable ni d’IPP qui permette de calculer la valeur d’une intégrale, quelle doit être la troisième chose à laquelle on pense directement ?