Equations and Values to Memorize Flashcards
CaO2 for 70kg patient
20mL/O2/dL
DO2 for 70kg patient
1,000mL/min
VO2 for 70kg patient
250mL/min
CVO2 for 70kg patient
15mL/dL
DO2 equation
CO x [(Hgb x SaO2 x 1.34) + (PaO2 x 0.003)] x 10 OR
CO x CaO2 x 10
CO equation
HR x SV
CaO2 equation
(1.34 x Hgb x SaO2) + (0.003 x PaO2)
VO2 equation
CO x (CaO2 - CvO2) x 10
CvO2 equation
(Hgb x SvO2 x 1.34) + (PvO2 x 0.003)
EO2 (oxygen extraction ratio)
25%
VO2/DO2 = 25%
(volume extracted/delivered)
Ohms Law Equation
flow = (pressure gradient / resistance)
normal SVR
800- 1500 dynes/sec/cm-5
MAP equation
= ((CO x SVR ) / 80) + CVP
Poiseuilles Law
Q = 3.14R^4change in pressure / 8* viscosity * length
blood flow = (pie x radius to the 4th x av pressure gradient)/ (8 x viscosity x length)
How is viscosity related to temperature?
It is inversely proportional
EF
[(EDV-ESV)/EDV] x 100
SVR
[(MAP-CVP)/CO] x 80
SV
CO x (1,000/HR)
SVRI
((MAP-CVP)/ 80) x CO
PVR
((MPAP-PAOP)/CO) x 80
PVRI
((MPAP-PAOP)/CO) x 80
PVR normal value
150-250 dynes/second/cm^-5
PVRI normal value
250-400dynes/sec/cm^-5 per m^2
two variables related by the frank starling mechanism
ventricular volume (filling pressures or EDV) in relation to ventricular output (CO, SV, LVSW, RVSW).
ex) LVEDP and SVR
list 3 surrogate measures of LVEDV
LVEDP, LAP, PAOP
Law of LaPlace as it relates to LV
wall stress= (intraventricular pressure x radius) / ventricular thickness
normal area of aortic valve orifice
2.5-3.5cm^2
severe aortic stenosis value
<.8cm^2
three values that indicate severe mitral stenosis
valve orifice <1cm^2 (normal 4-6)
transvalvular gradient >10mmHg (LA to LV) and
PASP >50mmHg
Coronary Perfusion Pressure (CPP) equation
aortic diastolic pressure - LVEDP or
DBP - PAOP
celsius equation
F - 32 * 5/9
Fahrenheit equation
C * 1.8 + 32
alveolar ventilation=
(Vt-Vd) x RR