Tölfræði (EBM) Flashcards

1
Q

Hvernig lítur histogram út?

A

Súlurit!

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Hvað er likelihood ratio?

A

Þetta er tengt grafinu sem Hjalti er alltaf að sýna.
Likelihood ratios are defined as the ratio of the probability of a test result among patients with a target disorder to the probability of that same test result among patients who do not have the target disorder.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Hvað er Fagan nomogram (likelihood ratio nomogram)?

A

The likelihood ratio nomogram (or ‘Fagan’ nomogram) enables a post-test probability to be graphically calculated if the pre-test probability and likelihood ratio are known. A line can be drawn connecting the pre-test probability and likelihood ratio, and this will intersect at the post-test probability on the right hand side:

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

UK national census er dæmi um hvernig rannsókn?

A

Cross-sectional study

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Er hægt að nota cross-sectional rannsóknir til að meta relative risk á að fá sjúkdóm? En cause vs effect?

A

Neibb, hvorugt.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Hver er munurinn á parametric vs non-parametric statistical significant tests?

A

Statistical significance tests can be either parametric or non-parametric. Parametric tests usually assume that data is normally distributed, whereas non-parametric tests are usually based on rank order.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

3 dæmi um parametric significance tests:

A
  • Unpaired student’s t
  • Paired student’s t
  • Pearson’s test
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

5 dæmi um non-parametric signifance tests:

A
  • Mann-Whitney U
  • Wilcoxon paired
  • Sign
  • Spearman’s rank
  • Kendall’s test
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Aðeins er hægt að nota chi-square test með hvernig data?

A

Nominal data (líka kallað categorical data)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Hvað er Gaussian distribution?

A

Normalkúrfa sem fylgir týpískri “bjöllulögun”.

In a Gaussian distribution:

  • The median is the middle point of the observations
  • The mode is the most commonly observed measurement
  • The mean is the arithmetic average

In a Gaussian distribution 95% of the observations fall within +/- 2 standard deviations of the mean.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Hvað er relative risk? Hvað mælir það?

A

Relative risk, or risk ratio, (RR) is used to compare the risk in the two different groups. It is the ratio of the absolute risks of the disease in the treatment group (ART) to the absolute risk of the disease in the control group (ARC). It measures the strength of association between a factor and an outcome.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Hvernig er number needed to treat reiknað út?

A

The NNT is defined as the inverse of the absolute risk reduction (ARR) and can therefore be calculated by:

NNT = 1 / ARR

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Hvað er specificity?

A

Sértæki.

The specificity is the proportion of true negatives correctly identified by the test.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Hvað er kaplan meier graf og hvernig lítur það út?

A

Notað til að bera saman survival hjá hópum sjúklinga sem fá mismunandi meðferð.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Hvað er Hospital Episode Statistics í UK?

A

Hospital Episode Statistics (HES) is a data collection process that involves the collection details of all hospital admissions, outpatient appointments and A&E attendances at NHS hospitals in England.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Hvernig reiknar maður likelihood ratio fyrir positive vs. negativt test?

A

The likelihood ratio for a positive test = sensitivity / (1-specificity)

The likelihood ratio for a negative test = (1-sensitivity) / specificity

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Hvernig er sensitivity reiknað?

A

Test positives / true positives

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Hvernig er specificity reiknað?

A

Test negatives / true negatives

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Ef próf er með minna en 100% specificity, þá fáum við falskt…

A

…jákvæð próf

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Ef próf er með minna en 100% sensitivity, þá munum við fá…

A

…falskt neikvæð próf

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Hvað er positive predictive value?

A

Sá hluti test positives sem eru í raun með sjúkdóminn.

22
Q

Ef próf er með minna en 100% specificity, þá fáum við falskt…

A

…jákvæð próf.

23
Q

Hvað er negative predictive value?

A

Sá hluti test negatives sem er í raun ekki með sjúkdóminn.

24
Q

Hvað er Type I error?

A

Möguleikinn á að hafna null hypothesis þegar hún er í raun sönn (þeas að trúa að effect sé til staðar þegar það er í raun ekki). Gerist í 1 af 20 tilfellum þegar við notum p gildi undir 0,05.

25
Q

Hvað er Type II error?

A

Að hafna EKKI null hypothesis þegar hún er EKKI sönn (þeas það er raunverulegur effect til staðar en við fundum hann ekki í þessari tilraun og verðum því að segja að það sé ekki munur). Gerist t.d. þegar rannsóknin er ekki með nægt power.

26
Q

Hvað er receiver operating characteristic curve? Hvað er það notað til að meta?

A

A receiver operating characteristic (ROC) curve is a graph used to assess diagnostic tests. The cut off point for a positive and negative test is varied and then the sensitivity and specificity for each of these cut off is calculated. A perfect test has a ROC curve that passes through the upper left corner (100% sensitivity, 100% specificity). Therefore the closer the ROC curve is to the upper left corner, the higher the overall accuracy of the test.

The area under the curve is a measure of how good the test is:
1 = perfect test
0.5 = test no better than chance

The y-axis of the ROC curve is the true positive rate, which = sensitivity

The x-axis of the ROC curve is the false positive rate, which = 1 – specificity

27
Q

Hvernig eru case control studies gerðar og fyrir hvernig sjúkdóma eru þær sérlega gagnlegar?

A

A case-control study is a type observational study in which two groups of patients, one with the disease and one without, are compared on the basis of a proposed causative factor that occurred in the past. They are therefore retrospective in nature and are useful in hypothesis generation.

They are suitable to be used when investigating a rare disease or as a preliminary study in cases where little is known about the disease and the proposed aetiological factor. They can look at multiple risk-factors (exposures) but can only look at a single outcome.

28
Q

Hver er munurinn á case control stúdíum vs. RCT og prosepctive cohort studies?

A

Compared with randomised controlled trials, case-control studies are generally relatively inexpensive to run but provide less evidence for causal inference.

Compared with prospective cohort studies, case-control studies are usually less expensive and also shorter in duration.

29
Q

Positive predictive value breytist m.a. eftir því…

A

Hversu algengur viðkomandi sjúkdómur er í viðkomandi þýði.

The positive predictive value is not intrinsic to the test and also depends upon the prevalence of the disease within the test population.

30
Q

8 mismunandi rannsóknaform í röð frá lægsta hierarchy of evidence upp í hæsta:

A
  • Expert experience
  • In-vitro research
  • Animal research
  • Case reports
  • Case series
  • Case control studies
  • Cohort studies
  • RCT
31
Q

Hver er munurinn á sensitivity og positive predictive value?

A

Sensitivity is the proportion of true positives correctly identified by the test.

The positive predictive value describes those patients with a positive test who also have the disease.

32
Q

Hver er munurinn á specificity og negative predictive value?

A

Specificity is the proportion of true negatives correctly identified by the test.

The negative predictive value describes those whose test results are negative who are disease free.

33
Q

Hvers konar error er selection bias?

A

Selection bias is a form of systematic error.

34
Q

Hvað er confounding factor?

A

Randomisation will reduce confounding.

A confounding factor is a background variable that is not of direct interest to the study.

35
Q

Hvenær eru random errors til staðar í mælingum og hvað veldur þeim?

A

Random error is always present in a measurement. They are caused by unpredictable fluctuations in the readings of a measurement apparatus or in the experimenters’ interpretation of the instrumental reading.

36
Q

Hvernig er experimental event rate reiknað?

A

T.d. í samanburðarhópi þar sem einn hópur fær samanburðarlyf og hinn nýtt:

(fjöldi þeirra sem FÁ sjúkdóm/einkenni þrátt fyrir að vera á nýja lyfinu) / (allir sem eru á nýja lyfinu)

37
Q

Hvernig er control event rate reiknað?

A

T.d. í samanburðarhópi þar sem einn hópur fær samanburðarlyf og hinn nýtt:

(fjöldi þeirra sem FÁ sjúkdóm/einkenni þrátt fyrir að vera á gamla lyfinu) / (allir sem eru á gamla lyfinu)

38
Q

Hvernig er relative risk reduction reiknað út?

A

(Control event rate - experimental revent rate) / Control event rate

39
Q

Hvernig er absolute risk reduction reiknað út?

A

Control event rate - experimental event rate

40
Q

Hvernig er number needed to treat reiknað út?

A

1 / absolute risk reduction

41
Q

Hvernig lítur Pareto diagram út og hvað sýnir það? Hver er tilgangur þess?

A

A Pareto diagram (also called a Pareto chart) is a type of chart that contains both a bar graph and a line graph. Each bar represents a category or set of qualitative data. The bars are arranged in order of frequency, so that more important categories are emphasized. The cumulative total is represented by the line graph.

The main purpose of a Pareto diagram is to highlight the most important data set among a set of different factors.

42
Q

Hvað verður um confidence interval þegar sample size verður stærra?

A

Confidence interval verður þá þrengra.

43
Q

Hvað er mode?

A

Tíðasta gildi

44
Q

Hvað er median?

A

Miðgildi

45
Q

Hvað er mean?

A

Meðaltal

46
Q

Studnet´s t test er statistical test fyrir parametric data. Hvað eru margir hópar í því?

A

2

47
Q

ANOVA er statistical test fyrir parametric data. Hvað eru margir hópar í því?

A

Fleiri en 2

48
Q

Fyrir hvernig data er chi squared test?

A

Fyrir qualitative data.

49
Q

Hvernig test er Kendall´s test?

A

Non-parametric significance test

50
Q

Hvernig lítur Funnel plot út og hver er tilgangur þess?

A

Funnel plots are a graphical means of checking for publication bias in meta-analyses and systematic reviews. The basic assumption is that trials showing no effect are less likely to be published if they are small than if they are large. Researchers conducting a large trial (which requires a lot of effort and funding) usually have an interest to publish the trial results even if negative. Furthermore, the running of a large trial is usually widely known in the field and difficult to hide. By contrast, it has been shown that small trials with a negative result more often remain unpublished, possibly because of a lack of interest or because the researcher (who may have links with the drug company funding the trial) may want to hide the negative result from the public. Evidence for publication bias can be assumed if smaller trials show more positive effects than larger trials (because small studies with a negative effects are more likely to remain unpublished).

The vertical axis of a funnel plot is a measurement of the precision of the estimated treatment effect (which is also an approximate measure of the size of the trial). The horizontal axis measures the treatment effect. The point estimate from each study is then plotted onto the graph and a vertical line inserted where the pooled estimate from the meta-analysis will lie. If the dots denoting the individual studies roughly form a symmetrical triangle, then publication bias is probably absent. If there is asymmetry, then publication bias can be suspected.