Umsetzung statistischer Daten in thematischen Karten Flashcards
1.) Wertintervalldarstellung
→ vorhandenen Werte werden in Klassen eingeteilt
Damit ist immer ein Informationsverlust verbunden
digitale interaktive Karten erlauben Angabe der Einzelwerte (z.B. über Tooltips)
Wertintervalldarstellung geeignet für:
• nominale, ordinale und metrische Skalen
• absolute und relative Werte
• 1 Merkmal
• einfachste Methode: Strichlisten; Visualisierung über Häufigkeitsdiagramm
• Häufigkeitsdiagramme als Grundlage für die Klassifizierung
2.) Stetige Mengendarstellung
Liegt ein Merkmal in absoluten Werten vor (z.B. Wahlberechtigte), bietet sich eine stetige bzw. kontinuierliche Mengenwertdarstellung an
Mengen eines Merkmals nur darstellbar sofern die Werte auch Absolutwerte (Mengenangaben) sind
Stetige Mengendarstellung geeignet für…
• metrische Skala
• absolute Werte
• 1 Merkmal
Im Überblick…
- Wertintervalldarstellung
− gestufte Mengendarstellung
− basiert auf Klassifizierung
− anwendbar bei allen Skalenniveaus, Absolut- und Relativwerten - Individualwertdarstellung
− stetige/kontinuierliche Mengendarstellung
− Darstellung eines Merkmals
− nur wenn die Werte Absolutwerte (zählbare Mengenangaben) sind - Bei >1 Merkmal empfiehlt sich die Diagrammdarstellung
3.) Diagrammdarstellung
• Für die gleichzeitige Darstellung mehrerer zusammengehöriger Merkmale
◦ Meist gibt es ein übergeordnetes Merkmal, das in mehrere untergeordnete Merkmale unterteilt wird,
z.B. gültige Stimmen unterteilt nach den Stimmen pro Partei, Bevölkerung 0-21, 21-64, 64+
◦ Wichtig: die untergeordneten Merkmale müssen 100% ergeben!
• Bei der Ausprägung der Merkmale kann es sich um relative und/oder absolute Werte
handeln
◦ z.B. gültige Stimmen (Absolutwert), Stimmen der Parteien in Prozenten (Relativwert)
→ Diagrammdarstellung geeignet für…
• mehrere Merkmale
• metrische Skala
• Übergeordnetes Merkmal: Absolutwert
• Untergeordnete Merkmale: relativ / absolut
4 Typen von Diagrammformen: Kreissektordiagramm, Flügeldiagramm, Stabdiagramm,
Flächendiagramm
Diagrammwahl
… abhängig von Art und Ausprägung der Daten:
1. Schritt: Grobselektion.
Welche Diagramme sind grundsätzlich für die Abbildung der Daten geeignet?
• Vergleich von Gesamtmengen
• Vergleich von Teilmengen verschiedener Diagramme
• Vergleich von Teilmengen mit der Gesamtmenge
• Darstellen von Nullmengen
• Darstellen von negativen Werten
- Schritt: Detailselektion.
Welches ist bei der konkreten Ausprägung der Daten am Besten geeignet?
• Erlaubt die Streuung eine angemessene Abbildung?
• die kleinsten Diagramme sollten die gängigen Minimalwerte einhalten
• die größten Diagramme sollten die Karte nicht zu sehr überdecken
Wahl des Signaturenmaßstabs
• so groß, dass die visuelle Wahrnehmung der Größenunterschiede gewährleistet ist
• so klein, dass die Ausdehnung der Signatur die Lesbarkeit nicht beeinträchtigt
• Überlagerungen sind möglich – kleinere Signaturen sollten aber immer im Vordergrund
stehen
• Grenze der Lesbarkeit:
◦ wenn die einzelne Signatur nicht mehr spontan erkennbar ist
◦ Häufung von Mehrfachüberlappungen
Darstellungsmöglichkeiten…
proportional:
• grundsätzlich ist eine proportional Darstellung anzustreben
• nicht jedoch wenn die einzelnen Zahlenwerte stark divergieren
kann zu unübersichtlichen Karten führen → Extremwerte verdecken die Karte oder Minimalwerte
sind nicht mehr erkennbar → dafür die willkürliche Darstellung wählen
Darstellungsmöglichkeiten…
willkürlich:
• geeignet bei stark divergierendem Wertebereich (Extremwerte)
• bei willkürlicher Darstellung jedoch aufpassen, dass Extremwerte immer noch als solche
erkennbar sind
• für sehr kleine Werte besteht die Möglichkeit der Verwendung nichtmaßstäblicher Minimal-
Signaturen
(gilt auch für 1.) Wertintervalldarstellung = gestufte Darstellung und 2.) Individualwertdarstellung = kontinuierliche Darstellung.)
Größen/Flächen
Bei flächenhaften Punkt-Signaturen (Kreis, Quadrat, Rechteck, Dreieck etc.) wird die Fläche der Signatur als zu assozierende Größe wahrgenommen
doppelter Sachwert → doppelte Signaturenfläche • intuitiver • platzsparend • tatsächliche Werte schwerer ablesbar • nicht-linearer Maßstab
doppelter Sachwert → doppelte Signaturhöhe
• falscher Eindruck (z.B. Quadrat: vierfache Fläche)
• tatsächliche Werte einfacher abzulesen
• linearer Maßstab
Lesbarkeit
Mindestgrößen
Damit die Informationen in einem Diagramm gelesen werden können, müssen Minimalgrößen eingehalten werden (= kartographisches Dogma)
Fallen Werte unter einen anzugebenden Minimalwert können Diagramme durch neue Signaturen dargestellt werden (Generalisierung):
Lesbarkeit
Teilmengen
Werden Teilmengen der Diagramme zu klein → inhaltliche Zusammenfassung von Teilmengen
Lesbarkeit
Platzierung und Optimierung
Bei der computergestützten Platzierung werden meist alle Diagramme am selben Bezugspunkt ausgerichtet.
Das Resultat muss in der Regel nach kartographischen Gesichtspunkten angepasst werden
→ Optimierung durch manuelles Verschieben und Anpassen
Beispiele:
Problem: Diagramme berühren sich; das kleine Diagramm geht im großen unter
→ Lösung: Entweder überlagern oder Abstand; außerdem: Konturlinien zur Abhebung der einzelnen Diagramme
Problem: Überdeckung der Basiskarte
→ Lösung: ist das Verdeckte wichtig, sollte das Diagramm verschoben werden; wenn nicht, dann kann es durch das Diagramm ersetzt werden.
Orts- und Gebietsdiagrammkarten → lokale Diagramme
• Allgemein: Orts- und Gebietskartogramme, Diakartogramme, Kartodiagramme
• Ziel: Darstellung von statistischen Werten durch Diagramme oder lokale Signaturen (je nach Thema
• und Datenstreuung mit gestufter bzw. kontinuierlicher Mengendarstellung)
• Geeignet für: mehrere metrisch skalierte Merkmale, absolute und relative Werte
• Legenden sind unerlässlich, um den LeserInnen die Karte verständlich zu machen (teilweise auch zusätzliche textuelle Interpretationshilfen)
→ Karten, wo Diagramme drauf sind, entweder bezogen auf einen Ort oder ein Gebiet. :D
Objektbezug:
Ortsdiagrammkarten:
Bsp. Diagrammbezug auf Rathaus/Magistrat → Ortsdiagrammkarte
Gebietsdiagrammkarten:
Bsp. Diagrammbezug auf Gemeindefläche → Gebietsdiagrammkarte
Ortdiagrammkarten
Diagramme beziehen sich immer auf eine bestimmte Punktlage (z.B. Krankenhaus, Magistrat)
→ Es muss klar ersichtlich ist, auf welchen Punkt sich das Diagramm oder die Punktsignatur
bezieht
• Diagramm dicht neben oder über dem topographischen Ortspositionszeichen platziert
• Zur besseren Orientierung ist die Basiskarte für Ortsdiagramme eher detailliert
• Zumeist begrenzter Platz→ eher kleine, einfache und gut zentrier- bzw. ausrichtbare
Diagramme
• Große und komplexe Diagramme: Lagezuordnung wird ungenau, gegenseitige Störung der Diagramme