Deskriptive Datenanalyse III Flashcards

1
Q

Korrelation Zsfassung

A
  • Korrelationen sind Zusammenhangs-Analysen
  • je stärker zwei Variablen gleichsinnig variieren (ko-variieren), desto höher ist ihre Korrelation
  • die Stärke der Korrelation lässt sich durch einen Korrelationskoeffizienten ausdrücken
  • die Pearson-Korrelation r wird für Intervall-Daten verwendet, Spearmans Rho und Kendalls Tau für Ordinaldaten
  • die Pearson-Korrelation unterstellt immer einen linearen Zusammenhang – dieser muss also mit Hilfe eines Streudiagramms erst geprüft werden
  • die inhaltliche Bedeutsamkeit der Korrelation hängt vom Inhaltsbereich, der Fragestellung und den Messinstrumenten ab
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Unterschiede - Allgemeines

A

Unterschiede beziehen sich auf die Messergebnisse der abhängigen Variable (AV) bei verschiedenen Messungen.
Unterschiede können sich auf unabhängige (between) oder abhängige (within) Messungen beziehen.
Unterschiede können zwischen 2 oder mehr Messungen analysiert werden.
Meistens werden Unterschiede zwischen Lagemaßen (Mittelwert, Median) analysiert.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Prüfung der Verteilungen vor Analyse

A

Überprüfen Sie die Verteilungen in den Gruppen/Bedingungen mit einem Histogramm.
Prüfen Sie, ob die Verteilungen hinreichend normalverteilt sind.
Normalverteilung gegeben: Mittelwert als Lagemaß sinnvoll.
Keine Normalverteilung: Median oder gar kein Lagemaß verwenden.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Histogramm

A

Ein Histogramm (Dichtediagramm) teilt die Ausprägungen einer Variable in gleich große Intervalle und stellt die Häufigkeiten dar.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Unterschiede zwischen zwei unabhängigen Gruppen

A

Differenz der Lagemaße analysieren.
Mit Mittelwerten: Differenz der Mittelwerte M1-M2 = 0,37.
Mit Medianen: Differenz der Mediane Mdn1-Mdn2 = -1.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Unterschiede bei abhängigen Messungen

A

Mittlere Differenz über alle Personen hinweg betrachten (jede Person ist in beiden Verteilungen enthalten).
Verteilung der Differenzen (nicht der Rohwerte) auf Normalverteilung prüfen.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Unterschiede bei mehr als zwei Messungen

A

Histogramme der einzelnen Gruppen/Bedingungen prüfen.
Variabilität der Mittelwerte beurteilen (Varianz der Mittelwerte).
Möglichkeit: Vergleichen von jeweils zwei Gruppen.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Interpretation von Unterschieden

A

Die Bedeutsamkeit von Unterschieden hängt vom Inhaltsbereich, der Fragestellung, den Messinstrumenten und der praktischen Relevanz ab.
Forscher/in beurteilt die Größe und Bedeutsamkeit.
Vorsicht bei Konventionen (z. B. nach Cohen)!

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Zusammenhänge
Thema: Kovarianz und Korrelation

A

Pearson-Korrelation
Voraussetzungen für die Berechnung
Die Höhe der Korrelation
Korrelation und Kausalität
Rangkorrelationen
Phi-Koeffizient

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Korrelation

A

Korrelation misst die Stärke des linearen Zusammenhangs zwischen zwei Variablen.
Grundlage für die Korrelation ist die Kovarianz.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Kovarianz

A

Kovarianz ist das gleichsinnige Variieren (ko-variieren) von Merkmalen.
Problem: Kovarianz ist abhängig von der Skalierung der Variablen.
Lösung: Standardisierung führt zur Korrelation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Pearson-Korrelation

A

Die Pearson-Korrelation (r) relativiert die Kovarianz an der Streuung (Standardisierung).
Wertebereich: -1 (perfekter negativer Zusammenhang) bis +1 (perfekter positiver Zusammenhang).
Höhere Dichte der Punktewolke bedeutet eine stärkere Korrelation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Höhe der Korrelation

A

Die Höhe der Korrelation hängt nur von der Dichte der Punktewolke ab, nicht von der Neigung der Gerade.
Größe und Bedeutsamkeit der Korrelation hängen vom Inhaltsbereich, der Fragestellung und den Messinstrumenten ab.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Voraussetzungen für die Pearson-Korrelation

A

Intervallskalenniveau der beiden Variablen.
Hinreichend lineare Zusammenhänge.
Keine deutlichen Ausreißer.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Korrelation und Kausalität

A

Eine Korrelation bedeutet, dass eine Variable aus der anderen statistisch vorhergesagt werden kann.
Eine Korrelation bedeutet jedoch nicht, dass die Variablen kausal miteinander verbunden sind.
Korrelationen können durch Drittvariablen verursacht werden (Scheinkorrelation).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Rangkorrelationen

A

Alternative zur Pearson-Korrelation, geeignet für Ordinaldaten.
Daten werden in Ränge umgewandelt, Zusammenhang muss monoton sein.
Zwei Methoden: Spearmans Rho (ρ) und Kendalls Tau (τ).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Phi-Koeffizient

A

Für den Spezialfall, dass beide Variablen nur zwei Ausprägungen haben.
Darstellbar in einer Vierfeldertafel.
Phi-Koeffizient wird ähnlich wie die Pearson-Korrelation interpretiert.

18
Q

Streudiagramme (Scatterplots)

A

Visualisierung von Zusammenhängen zwischen Variablen.
Punktewolke im Diagramm zeigt die Stärke und Richtung des Zusammenhangs.
„Dünnere“ Punktewolke bedeutet einen stärkeren Zusammenhang.

19
Q

Bubble-Plot

A

Eine dritte Variable kann durch die Größe der Punkte in Streudiagrammen dargestellt werden.
Diese Darstellung wird als Bubble-Plot bezeichnet.

20
Q

Varianz in der Statistik

A

Schlüsselkonzept:

Varianz (Streuung) von Erleben und Verhalten ist zentral in der Statistik.
Ziel: Varianz erklären, vorhersagen und verändern (Varianzaufklärung).
Korrelation und Regression sind zentrale Instrumente dafür.

21
Q

Zusammenfassung - Korrelation
Kernpunkte:

A

Korrelationen analysieren Zusammenhänge zwischen Variablen.
Die Stärke der Korrelation wird durch einen Korrelationskoeffizienten ausgedrückt.
Pearson-Korrelation für Intervall-Daten, Spearmans Rho und Kendalls Tau für Ordinaldaten.
Die Bedeutsamkeit der Korrelation hängt vom Inhaltsbereich, der Fragestellung und den Messinstrumenten ab.
Diese Karteikarten bieten eine strukturierte Übersicht ü

22
Q

Unterschiede zwischen unabhängigen Gruppen

A

Analyse von Unterschieden in den Lagemaßen (z.B. Mittelwert, Median) zwischen zwei unabhängigen Gruppen.
Wichtig, vor der Analyse die Normalverteilung der Daten zu prüfen.
Interpretation der Unterschiede hängt von der theoretischen und praktischen Relevanz ab.

23
Q

Unterschiede zwischen abhängigen Messungen

A

Abhängige Messungen beinhalten die Analyse von Daten, bei denen die gleichen Personen in mehreren Bedingungen gemessen wurden.
Wichtig: Verteilung der Differenzen zwischen den Messungen auf Normalverteilung prüfen.

24
Q

Unterschiede bei mehr als zwei Gruppen

A

Analyse der Variabilität der Lagemaße (z.B. Varianz der Mittelwerte) über alle Gruppen hinweg.
Möglichkeit, paarweise Gruppenvergleiche durchzuführen, um spezifische Unterschiede zu identifizieren.

25
Q

Interpretation der Unterschiedsgröße

A

Die Größe und Bedeutsamkeit eines Unterschieds ist kontextabhängig.
Forscher/in entscheidet über die Relevanz der Unterschiede.
Vorsicht bei der Verwendung von Konventionen, wie z.B. Cohens d, ohne Berücksichtigung des spezifischen Forschungskontextes.

26
Q

Korrelation und Streudiagramme

A

Streudiagramme helfen, visuelle Zusammenhänge zwischen zwei Variablen zu erkennen.
Die Dichte und Anordnung der Punkte im Diagramm zeigen die Stärke und Richtung des Zusammenhangs.

27
Q

Korrelation und Drittvariablen
Achtung:

A

Korrelationen können durch Drittvariablen verursacht werden, was zu Scheinkorrelationen führt.
Es ist wichtig, potenzielle Drittvariablen zu identifizieren und zu kontrollieren, um valide Schlussfolgerungen zu ziehen.

28
Q

Berechnung der Pearson-Korrelation

A
  1. Berechnen der Kovarianz der beiden Variablen.
  2. Kovarianz durch das Produkt der Standardabweichungen der beiden Variablen teilen.
  3. Ergebnis ist der Korrelationskoeffizient r, der zwischen -1 und +1 liegt.
29
Q

Interpretation der Pearson-Korrelation

A

r = +1: Perfekter positiver Zusammenhang.
r = -1: Perfekter negativer Zusammenhang.
r = 0: Kein linearer Zusammenhang.
Interpretation abhängig von der Dichte der Punktewolke und dem Kontext der Daten.

30
Q

Spearmans Rho vs. Kendalls Tau
Unterschiede:

A

Spearmans Rho (ρ): Einfachere Formel, basiert auf Rangdifferenzen.
Kendalls Tau (τ): Robuster, besonders geeignet für kleine Stichproben.
Beide messen die Stärke eines monotonen Zusammenhangs bei ordinalen Daten.

31
Q

Phi-Koeffizient - Anwendung

A

Der Phi-Koeffizient wird verwendet, wenn beide Variablen dichotom (zwei Ausprägungen) sind.
Berechnung erfolgt anhand einer Vierfeldertafel, ähnlich der Pearson-Korrelation.

32
Q

Korrelation und Regression

A

Korrelation misst die Stärke des Zusammenhangs, Regression analysiert die Richtung und Vorhersagekraft.
Regression verwendet die Korrelation, um Vorhersagen über den Zusammenhang zwischen unabhängiger und abhängiger Variable zu machen.

33
Q

Interpretation von Streudiagrammen

A

Identifizieren Sie die Richtung des Zusammenhangs (positiv, negativ, keiner).
Beurteilen Sie die Dichte der Punktewolke, um die Stärke des Zusammenhangs zu bewerten.
Prüfen Sie auf nicht-lineare Muster, die auf eine komplexere Beziehung hinweisen könnten.

34
Q

Varianz und Varianzaufklärung

A

Varianz misst, wie stark Datenpunkte um den Mittelwert streuen.
Ziel der Statistik: Varianz zu erklären und vorherzusagen (Varianzaufklärung).
Korrelation und Regression sind zentrale Methoden, um Varianz zu analysieren und zu erklären.

35
Q

Lineare Zusammenhänge

A
36
Q

Kovarianz Formel

A
37
Q

Korrelation Formel

A
37
Q

Die Höhe der Korrelation ist nur von der Dichte der Punktewolke abhängig, nicht von der Neigung der Gerade

A
38
Q

Monotonic/Non-Monotonic

A
39
Q

Phi-Koeffizient

A
40
Q

Bubble-Plot

A