Antimicrobial therapy Flashcards
Antimicrobial therapy - groups
- Cell wall synthesis
- Folic acid synthesis
- DNA topoisomerases
- Damage DNA
- mRNA synthesis
- Protein synthesis
- daptomycin
Antimicrobial therapy - Cell wall synthesis drugs - divided to
- Peptidogylcan synthesis drugs
2. Peptidoglycan cross linking
Antimicrobial therapy - peptidoglycan cross linking - Groups and drugs
- Penicillinae sensitive penicillins (amoxillin, ampicillin, Penicillin G and V)
- Penicillinase-resistant penicillins (Dicloxacillin, Nafcillin, Oxacillin, Methcillin)
- Antipseudomonals (Piperacillin, Ticarcillin)
- Cephalosporins (I-V)
- Carbapenems (Doripenem, Ertapenem, Imipenem, Meropenem)
- Monobactams (Aztreonam)
Antimicrobial therapy - Penicillinae sensitive penicillins - drugs
- amoxillin
- ampicillin
- Penicillin G and V
Prototype β-lactam antibiotics
Penicillin G and V
Penicillin G vs V
Penicillin G –> IV and IM form
Penicillin V –> Oral
Penicillin G and V - mechanism of action
D-Ala-Ala analog –> Bind penicillin-binding proteins (transpeptidas) –> blocks trasnpeptisase cross linking of peptidoglycan in cell wall –> inhibits cell wall synthesis –> Activate autolytic enzyme
BACTERICIDAL
Penicillin G and V - clinical use
gram + cocci and robs, gram (-) cocci, spirochetes:
- gram (+) organisms (S. pneumoniae, S.pygoenes, Actinomyces)
- gram (-) cocci (mainly N. meningitidis)
- spirochetes (mainly T. pallidum)
Penicillin G and V - toxicity
- Hyperesensitivity reactions
2. Hemolytic anemia
Penicillin G and V - resistance
Penicillinae in bacteria (a type of β-lactamase) cleaves β-lactam ring
aminopenicillins - drugs
- amoxillin
2. ampicillin
aminopenicillins (amoxicillin, ampicillin) - mechanism of action
same as penicillin but WIDER SPECTRUM
aminopenicillins (amoxicillin, ampicillin) - clinical use
extended spectrum penicillin: 1. H. infl 2. H. pylori 3. E. coli 4. Listeria 5. Proteus 6. Salmonella 7. Shigella 8. Entetococci MNEMONIC : HHELPSS + enterococci
aminopenicillins (amoxicillin, ampicillin) - toxicity
- hypersensitivity reactions
- rash
- pseudomembranous colitis
aminopenicillins (amoxicillin, ampicillin) - mechanism of resistance
penicillinase in bacteria (a type of β-lactamase) cleaves β-lactams ring–> combine with clavulanic acid
Penicillinase-resistant penicillins - drugs
- Dicloxacillin
- Nafcillin
- Oxacillin
- Methcillin
Penicillinase-resistant penicillins - mechanism of action
same as penicillin
NARROW SPECTRUM AND PENICILLINASE RESISTANT
Penicillinase-resistant penicillins - mechanism of penicillinase resistance
Bulky R group blocks blocks access of β-lactase to lactam ring
Penicillinase-resistant penicillins - drugs and clinical use
- Dicloxacillin2. Nafcillin 3. Oxacillin 4. Methcillin
S. aureus (except MRSA)
MRSA - mechanism of resistance
altered penicillin binding protein target site
Penicillinase-resistant penicillins - toxicity
- hypersensitivity reactions
2. interstitial nephritis
Antipseudomonals - drugs
Piperacillin, Ticarcillin
Antipseudomonals - mechansism of action
same as penicillin
Extended spectrum
Antipseudomonals - clinical use
- psudomonas spp and gram-negative robs
2. gram (-) robs
Antipseudomonals - toxicity
hypersensitivity reaction
Antipseudomonals - resistance
susceptible to penicillinase –> use with β-lactamase
β-lactamase inhibitors - drugs
- clavulanic acid
- sulbactam
- tazobactam
β-lactamase inhibitors - use
often added to penicillin antibiotics to protect the antibiotic from destruction by β-lactamase (penicillinase)
Cephalosporins - drugs
1st generation –> cefazolin, cephalexin
2nd generation –> cefoxitin, cefaclor, cefuroxamine
3rd generation –> ceftriaxone, cefotaxime, ceftazidime
4th generation –> cefepime
5th generation –> ceftraroline
Cephalosporins - mechanism of action
β- lactam drugs that inhibit cell wall synthesis but are less susceptible to penicillinases - BACTERICIDAL
organisms typically not covered by Cephalosporins?
mnemonic: LAME
Listeria, Atypicals (Chlamydia, Mycoplasma) MRSA, Entrococci
exception. Ceftaroline (5th) covers MRSA
1st generation cephalosporins - drugs and clinical use
cefazolin, cephalexin 1. gram + cocci 2. Proteus 3. E. coli 4. Klebsiella cefazolin used prior to surgery to prevent S. aureus wound infection
cefazolin used prior to surgery to
prevent S. aureus wound infection
2nd generation - drugs and clinical use
cefoxitin, cefaclor, cefuroxamine
- like 1st generation (gram + cocci, proteus, E.coli, Klebsiella)
- H. infuenzae
- Enterobacter aerogenes
- Neisseria spp
- Serratia marcescens
3rd generation - drugs and clinical use
ceftriaxone, cefotaxime, ceftazidime
serious gram (-) infections resistant to other β-lactams
- ceftriaxone –> meningitis, gonnorrhea, disseminated Lyme disease
- Ceftazimide –> Pseudomonas
4th generation - drugs and clinical use
cefepime
gram (-) organism, with high activity against Pseudomonas
2. gram (+)
5th generation - drugs and clinical use
ceftaroline 1. broad gram (+) 2. borad gram (-) INCLUDING MRSA DOES NTO COVER PSEUDOMONAS
Cephalosporins - toxicity
- hypersensitivity reactions
- autoimmune hemolytic anemia
- disulfiram-like reaction
- vitamin K deficiency
- exhibit cross-reactivity with penicillins
- Increases aminoglycosides mediated nephrotoxicity
Cephalosporins - mechanise of resistance
structural change in penicillin-binding proteins (transpeptidase)
Carbapenems - drugs
- Imipenem
- Meropenem
- Doripenem (newer)
- Ertapenem (newer)
Carbapenems - mechanism of action
broad spectrum, β-lactamase-resistant β-lactam
ALWAYS ADMINISTRATED WITH CILASTATIN (inhibitor of renal dehydropeptidase I) to decrease inactivation of drug in renal tubule –> meropenem is stable to cilastatin
cilastatin - mechansim of action
inhibitor of renal dehydropeptidase I
Carbapenems - clinical use
- Gram (+) cocci
- Gram (-) robs
- anaerobes
WIDE spectrum but significant side effects limit use of life threatening infection or after other drugs have failed
Ertapenem has limited pseudomonas coverage
Carbapenems - toxicity
- GI distress
- skin rash
- CNS toxicity (seizurs) at high plasma levels (less risk with meropenem)
Monobactams - drugs
Aztreonam
Monobactams (Aztreonam) - mechansim of action
Bind penicillin-binding proteins 3 (transpeptidas) –> blocks trasnpeptisase cross linking of peptidoglycan in cell wall –> inhibits cell wall synthesis –> Activate autolytic enzyme
LESS SUSCEPTIBLE TO β-lactamases
Monobactams (Aztreonam) - 2 special characteristics
- no cross-allergenicity with penicillins
2. Synergistic with aminoglycosides
Monobactams (Aztreonam) - clinical use
- Gram (-) robs ONLY (no anaerobesm no gram (+))
For penicillin allergic patients and those with renal insufficiency who cannot tolerate aminoglycosides
Monobactams (Aztreonam) - side effects
usually nontoxin –> occasional GI upset
Monobactams (Aztreonam) - β-lactamases
less susceptible
Carbapenems (Doripenem, Ertapenem, Imipenem, Meropenem) - β-lactamases
resistant
Antimicrobial therapy - Cell wall synthesis drugs - divided to
- Peptidogylcan synthesis drugs
2. Peptidoglycan cross linking
Antimicrobial therapy - Cell wall synthesis drugs - groups and drugs
glycopeptides:
1. Bacitracin
2. Vancomycin
Vancomycin - mechanism of action
inhibits cell wall peptidoglycan formation by binding D-ala D-ala portion of cell wall precursors
BACTERICIDAL
not susceptible to β-lactamases
Vancomycin - clinical use
gram (+) bugs only: serious Multidrug resistance organisms, including: - MRSA - S. epidermidis - Clostiridium difficle (oral) - Enterococcus species
Vancomycin - toxicity
well tolerated
- nephrotoxicity
- ototoxicity
- thrombophlebitis
- red man syndrom (diffuse flushing)
red man syndrom - appearance, caused by, solution
- diffuse flushing
- it is caused by vancomycin
- pretreatment with antihistamines and slow infusion rate
Vancomycin - mechanism of resistance
occurs in bacteria via amino acid modification of D-ala D-ala to D-ala D-lac
Antimicrobial therapy - DNA topoisomerases - drugs
Fluroroquinolones: (-FLOXACIN) + enoxacin
- CIPRO-
- NOR-
- LEVO-
- O-
- MOXI
- GEMI-
- ENOXACIN
Fluroroquinolones - drug that i not -floxacin
enoxacin
Fluroroquinolones - mechanism of action
inhibit prokaryotic enzymes topoisomerase II (DNA gyrase) and topoisomerase IV
BACTERICIDAL
Fluororoquinolones - clinical use
- gram (-) robs of urinary and GI tracts (including Pseudomonas)
- Neisseria
- some gram (+)
Fluororoquinolones - toxicity
- GI upset
- superinfections
- skin rash
4 .headache/dizziness - leg cramps and myalgias (less commonly)
- Prolonged QT
- tendonitis or tendon rupture (if >60 or prednisone)
- contraindicated in pregnancy, nursing mothers, children under eighteen –> possible damage to cartilage
Fluororoquinolones - mechanism of resistance
- chromosome encoded mutation in DNA gyrase
- plasmid mediated resistance
- efflux pumps
Antimicrobial therapy - damage DNA drug
metronidazole
metronidazole - mechanism of action
Forms toxic free radical metavolites in the bacterial cell that damage DNA.
BACTERICIDAL, ANTIPROTOZOAL
metronidazole - clinical use
- Giardia
- Entamoeba
- Trichomonas vaginalis
- Garndenella vaginalis
- Anaerobes (Bacteroides, C. difficile)
- H. pylori
metronidazole - adverse effects
- Disulfiram-like reaction (severe flushing, tachycardia, hypertension) with alcohol
- headache
- metallic taste
Daptomycin - mechanism of action
lipopeptide that disrupt cell membrane of gram (+) cocci
Daptomycin - clinical use
- S. aureus SKIN infection (esp MRSA)
- bacteremia
- endocarditis
- VRE
Daptomycin to pneumonia
not used –> avidly binds to and is inactivated by surfactant
Daptomycin - toxicity
- Myopathy
2. rhabdomyolysis
Antimicrobial therapy - protein synthesis - divisions and drugs
50S –> 1. Chloramphenicol 2. Clindamycin 3. Linezolid 4. Macrolides 5. Streptogramins
30S –> 1. aminoglycosides 2. Tetracyclines
Antimicrobial therapy - protein synthesis - mechanism of action
specifically target smaller bacterial ribosome (70S=30S+50S), leaving human ribosome (80S) unaffected
Aminoglycosides - drugs
- Gentamycin
- Neomycin
- Amikacin
- Tobramycin
- Streptomycin
Aminoglycosides - mechanism of action
- irreversible inhibition of initiation complex through binding of the 30S subunit
- mRNA misreading
- Block translocation
BACTEROCIDAL /REQUIRE O2 FOR UPTAKE
Aminoglycosides - clinical use
- severe gram (-) rob infection
- Synergistic with β-lactam antibiotics
- Neomycin for bowel surgery
Aminoglycosides - side effects
- nephrotoxicity (worse with cephalosporins)
- Neuromascular blockage
- Ototoxicity (esp with loop diuretics)
- Teratogen
Aminoglycosides - ototoxicity espc with
loop diuretics
Aminoglycosides - mechanism of resistance
Bacterial tranferase enzymes inactivate the drug by acetylation, phosphorylation, or adenylation
Tetracyclines - drugs
- CYCLINE
- tetracycline
- doxycycline
- minomycline
Tetracyclines - mechanism of action
bind 30S (A-site tRNA binding) and prevent attachment of aminoacyl-tRNA
BACTERIOSTATIC
LIMITED CNS PENETRATION
Tetracyclines - cns
limited penetration
doxycycline - special characteristic
it is fecally eliminated and can be used in patients with renal failure
Tetracyclines - co-administrations
do not take tetracyclines with milk (Ca2+), antiacids (Ca2+ or Mg2+), pr iron-containing preparations –> divalent cations inhibit drug’s absorption in the gut
Tetracyclines - clinical use
- Borrelia bugdorferi
- M. pneumoniae
- Rickettsia
- Chlamydia
- acne
- Ehrichiosis/Anaplasmosis
- Q fever
Tetracyclines - effective against Rickettsia and chlamydia because of
their ability to accumulate intracellulary
Tetracyclines - renal failure
doxycycline is fecally eliminated and can be used in patients with renal failure
Tetracyclines - toxicity
- GI distress
- discoloration of teeth and inhibition of bone growth in children
- photosensitivity
- Contraindicated in pregnancy
Tetracyclines - mechanism of resistance
decreased uptake or increased efflux out of bacterial cells by plasmid-encoded transport pumps
Antimicrobial therapy - protein synthesis - 30S inhibitors (and bactericidal or bacteriostatic)
1. Aminoglycosides (bactericidal) 2 Tetracyclines (bacteriostatic)
chloramphenicol - mechanism of action
block peptidyltranferase at 50S ribosomal subunit
Bacteriostatic
chloramphenicol - clinical use
- meningitis (H. infl, N. meningitis, S. pneumoniae)
- Rocky Montain spoted fever (R. ricketsi)
Limited use owing to toxicities but often still used in developing countries (low cost)
chloramphenicol - toxicity
- anemia (dose dependent)
- aplastic anemia (dose independent)
- gray baby syndrome
chloramphenicol - gray baby syndrome - mechanism
in premature infants because they lack liver UDP-glucuronyl tranferase
chloramphenicol - mechanism of resistance
plasmid-encoded acetyltranferase inactivates the drug
Clindamycin - mechanism
blocks peptide transfer (translocation) at 50S ribosomal subunit.
BACTERIOSTATIC
Clindamycin - clinical use
- anaerobic infections in aspiration pneumonia, lung abscess, oral infection
- invasive A streptococcal infection
- Gardenella vaginalis
metronidazole vs clincamycin according to clinical use
treats anaerobic infection below diaphragm with metronidazole and above diaphragm with clindamycin
Clindamycin - toxicity
- pseudomembranous colitis
- fever
- diarrhea
Oxalinezolid - drugs
Linezolid
Linezolid - mechanism of action
it inhibits protein synthesis by binding to 50S subunit and preventing formation of the initiation complex
Linezolid - clinical use
gram (+) species MRSA and VRE
Linezolid - toxicity
- bone marrow suppression (esp thrmbocytopenia)
- peripheral neuropathy
- seretonin syndrome
Linezolid - mechanism of resistance
point mutation of ribosomal RNA
Macrolides - drugs
- Azythromycin
- Clarithromycin
- Erythromycin
Macrolides - mechanism of action
bind to the 23S rRNA of the 50S ribosomal subunit
–> inhibit protein synthesis by blocking translocation
BACTERIOSTATIC
Macrolides - clinical use
- Atypical pneumonias (Mycoplasma, chlamydia, legionalla
- STI (chlamydia)
- Gram (+) cocci (streptococcal infections in patients allergic to penicillin)
- B. pertusis
Macrolides - resistance
methylation of 23S rRNA-binding site prevents binding of drug
Macrolides - side effects
- GI uspet 2
- Arrhytmia (long QT)
- Acute cholestatic hepatitis
- Rash
- eosinophilia
- increased serum levels of theophyllines, oral anticoagulants
- inhibit P-450 (clarithromycin and erythrmicycin)
- contraindicated in pregnancy (embryotoxic)
macolides - P-450
clarithromycin and erythrmicycin inhibit P-450
Antimicrobial therapy - protein synthesis - divisions and drugs (bactericidal or bacteriostatic)
50S –> 1. Chloramphenicol (bacteriostatic) 2. Clindamycin (bacteriostatic) 3. Linezolid (variable) 4. Macrolides (bacteriostatic) 5. Streptogramins
30S –> 1. aminoglycosides (bactericidal 2. Tetracyclines (bacteriostatic)
Streptogramins - drugs
- Dalfopristin
2. Quinupristin
Antimicrobial therapy - Folic acid synthesis - drugs
- Sulfonamides: a. sulfadiazine b. sulfamethoxazole (SMX)
c. sulfisoxazole - Trimethoprim (or pyrimethamine)
- dapsone
Tetrahydrofolic acid (THF) synthesis pathway
PABA + Pteridine --> Dihydropteroic acid (Dihydropteroate syntase) --> Didhydrofolic acid --> Tetrahydrofolic acid (THF) (Dihydrofolate reductase)
Tetrahydrofolic acid (THF) can give rise to
- Purines (DNA, RNA)
- Thymidine (DNA)
- Methionine (Protein)
Trimethoprim - mechanism of action
inhibits bacterial dihydrofolate reductase
BACTERIOSTATIC
dihydrofolate reductase - action
Didhydrofolic acid --> Tetrahydrofolic acid (THF)
Trimethoprim - clinical use
in combination with sulfonamides (TMP-SXM) –> seqential block of folate syntesis –>
1. UTI 2. Shigella 3. Salmonella 4. P. jorovecii (treatment and prophyaxis) 5. toxoplasmosis prophylaxis
Trimethoprim - toxicity
- megaloblastic anemia
- leukopenia
- granulocytopenia
MAY ALLEVIATE WITH SUPPLEMENTAL FOLINIC ACID
Tetrahydrofolic acid (THF) synthesis pathway - PABA?
Para-aminobenzoic acid
Tetrahydrofolic acid (THF) synthesis pathway
PABA + Pteridine --> Dihydropteroic acid (Dihydropteroate syntase) --> Didhydrofolic acid --> Tetrahydrofolic acid (THF) (Dihydrofolate reductase)
Antimicrobial therapy - Folic acid synthesis - drugs
- Sulfonamides: a. sulfadiazine b. sulfamethoxazole (SMX)
c. sulfisoxazole - Trimethoprim (or pyrimethamine)
Sulfonamides - drugs
a. sulfadiazine
b. sulfamethoxazole (SMX)
c. sulfisoxazole
Sulfonamides - mechanism of action
PABA antimetobolites (analog) inhibit dihydropteroate synthase BACTERIOSTATIC (BACTERICIDAL when combined with trimethoprim)
Sulfonamides - clinical use
- Gram-positives
- Gram-negatives
- Nocardia
- Chlamydia
- simple UTI (TRIPLE SULFAS or SMX)
Sulfonamides - toxicity
- hypersensitivity 2. G6PD hemolysis
- nephrotoxicity (tumbulointestinal nephritis)
- photosensitivity 5. kernicterus (infants)
- displace other drug from albumin (eg. warfarin)
Sulfonamides displaces other drugs from albumin - example
warfarin
Sulfonamides - nephrotoxicity?
tumbulointestinal nephritis
Sulfonamides - mechanism of resistance
- altered enzyme (bacterial dihydropteroate syntase)
- decreased uptake
- increased PABA synthesis
Dapsone mechanism of action and side effects
similar to sulfonamides, but structurally distinct agent
Hemolysis if G6PD deficiency
Dapsone clinical use
- Leprosy (leptromatous and tuberculoid)
2. Pneumocystis jorovecii prophylaxis
botulism treatment
antitoxin
pseudomembranous colitis - treatment
metronidazoleo or oral vancomycin
For recurrent cases, consider repeating prior regimen, fidaxomicin, or fecal microbiota transplant
Listeria monocytogenes - treatment
- gastroenteritis is self limited
2. ampicillin in infants, immunocompromised, and the elderly as empirical treatment of meningitis
actinomyces vs Nocardia according to treatment
MNEMONIC: SNAP –> Sulfa - Nocardia / Actinom - Penicillin
Acinomyces –> penicillin
Nocardia –> sulfonamides
C. tetani - therapy
Prevent with tetanus vaccine
treat with antitoxin +/- vaccine booster and diazepam (for muscle spasms)
neisseria gonococci vs neisseria meningitis - treatment
neisseria gonococci –> ceftriaxone + (azithromycin or doxycycline) for possible chlamydial coinfection
neisseria meningitis –> ceftraxone or penicillin G
neisseria gonococci vs neisseria meningitis - prevention
neisseria gonococci –> condoms (for STD), erythromycin ointment (neonatal transmision)
neisseria meningitis –> Rifampin, ciprofloxacin or ceftriaxone prophylaxis in close contacts
H. influenza - treatment/prophylaxis
- mucosal infection –> amoxicillin +/- clavulanate
- meningitis –> ceftriaxon.
prophylaxis –> rifampin
Legionella - treatment
macrolide or quinolone
Pseudomonas aeroginosa - treatment
- extended spectrum β-lactams (eg piperacillin, ticarcillin, cafepime)
- Carbapenems (eg imipenem, meropenem)
- Monobactams (eg aztreonam)
- Fluoroquinolones (eg ciprofloxacin)
- Aminoglycosides (eg. gentamycin, tobramicin)
- For multidrug resistant stains –> colistin, polymyxin B
typhoid fever - treatment
ceftriaxone or flouroquinolone
Helicobacter pylori - treatment
MC initial treatment:
PROTON PUMP INHIBITOR + CLARITHROMYCIN + AMOXICILLIN (or metronidaxzole if penicillin allergy)
Lyme disease - treatment
- doxycycline
2. ceftriaxone
how to prevent congenital syphilis
treat mother early in pregnancy, as placental transmission occurs after first trimester
patients with + culture of Streptococcus agalactiae –>
receive intrapartum penicillin for prophylaxis
Gardnerella vaginalis - treatment
metronidazole or clindamycin
Typhus treatment
all vector-borne illness - rash common and rash rare diseases –> doxycycline
Q fever treatment
all vector-borne illness - rash common and rash rare diseases –> doxycycline
Chlamydia - treatment
azythromycin (favored because in time treatment) or doxycycline
Lymphogranuloma venereum - treatment
doxycycline
Mycoplasma pneumoniae - treatment
macrolides, doxycycline, or fluoroquinolone
antimicrobial prophylaxis - high risk for endocarditis and undergoing surgical or dental procedures
amoxicillin
antimicrobial prophylaxis - exposure to gonorrhea
ceftriaxone
antimicrodial prophylaxis -history of reccurent UTIs
TMP-SMX
antimicrobial prophylaxis - exposure to meningococcal infection
ceftriaxone, ciprofloxacin or rifampin
antimicrodial prophylaxis - Pregnant woman carrying group B strep
Penicillin G
antimicrobial prophylaxis - prevention of gonococcal conjuctivitis in newborn
Erythomycin oitment
antimicrobial prophylaxis - prevention of postsurgical infection due to S. aureus
Cefazolin
antimicrobial prophylaxis - prophylaxis of strep pharyngitis in child with prior rheumatic fever
Benzathine penicillin G
or
oral penicillin V
antimicrobial prophylaxis - Exposure to syphilis
Benzathine penicillin G
antibiotic for bowel surgery
neomycin
Antibiotics to avoid in pregnancy (and why)
- Sulfonamides –> Kernicterus
- Amniglycosides –> Ototoxicity
- Fluoroquinolones –> Cartilage damage
- macrolides –> embryotoxic
- tetracyclines –> DIscolored teeth, inhibiton of growth
- Chloramphenicol –> Gray babe syndrome
- Griseofluvin –> teratogenic
- Ribavirin (antiviral)
non bacterial antibiotics to avoid in pregnancy
- Griseofluvin –> teratogenic
2. Ribavirin (antiviral)
antibiotic that causes kernicterus if used during pregnancy
Sulfonamides
Treatment of highly resistant bacteria
MRSA: vancomycin, daptomycin (esp skin), linezolid, tigecycline, ceftaroline
VRE: linezolid and streptogramins (quinupristin, dalfopristin)
Multidrug-resistant P. aeruginosa: polymixins B and E (Colistin)
Multidrug-resistant Acinetobacter baumannii: polymixins B and E (Colistin)
Treatment of MRSA
vancomycin, daptomycin (esp skin), linezolid, tigecycline, ceftaroline
treatment of VRE
linezolid and streptogramins (quinupristin, dalfopristin)
treatment Multidrug-resistant P. aeruginosa
polymixins B and E (Colistin)
treatment of Multidrug-resistant Acinetobacter baumannii
polymixins B and E (Colistin)
antibiotics - prophylaxis in HIV patients (and why)
CD4 under 2 hundred –> TMP-SMX (pneumocysts)
CD4 under 1 hundred –> TMP-SXM (pneumocysts and toxoplasmosis)
CD4 under fifty –> Azithromycin or clarythromycin (M. avium complex)
antibiotics - prophylaxis in HIV patients (and why) - under 2 hundred
TMP-SMX (pneumocysts)
antibiotics - prophylaxis in HIV patients (and why) - under 1 hundred
TMP-SXM (pneumocysts and toxoplasmosis)
antibiotics - prophylaxis in HIV patients (and why) - under fifty
Azithromycin or clarythromycin (M. avium complex)