Antimicrobial therapy Flashcards
Antimicrobial therapy - groups
- Cell wall synthesis
- Folic acid synthesis
- DNA topoisomerases
- Damage DNA
- mRNA synthesis
- Protein synthesis
- daptomycin
Antimicrobial therapy - Cell wall synthesis drugs - divided to
- Peptidogylcan synthesis drugs
2. Peptidoglycan cross linking
Antimicrobial therapy - peptidoglycan cross linking - Groups and drugs
- Penicillinae sensitive penicillins (amoxillin, ampicillin, Penicillin G and V)
- Penicillinase-resistant penicillins (Dicloxacillin, Nafcillin, Oxacillin, Methcillin)
- Antipseudomonals (Piperacillin, Ticarcillin)
- Cephalosporins (I-V)
- Carbapenems (Doripenem, Ertapenem, Imipenem, Meropenem)
- Monobactams (Aztreonam)
Antimicrobial therapy - Penicillinae sensitive penicillins - drugs
- amoxillin
- ampicillin
- Penicillin G and V
Prototype β-lactam antibiotics
Penicillin G and V
Penicillin G vs V
Penicillin G –> IV and IM form
Penicillin V –> Oral
Penicillin G and V - mechanism of action
D-Ala-Ala analog –> Bind penicillin-binding proteins (transpeptidas) –> blocks trasnpeptisase cross linking of peptidoglycan in cell wall –> inhibits cell wall synthesis –> Activate autolytic enzyme
BACTERICIDAL
Penicillin G and V - clinical use
gram + cocci and robs, gram (-) cocci, spirochetes:
- gram (+) organisms (S. pneumoniae, S.pygoenes, Actinomyces)
- gram (-) cocci (mainly N. meningitidis)
- spirochetes (mainly T. pallidum)
Penicillin G and V - toxicity
- Hyperesensitivity reactions
2. Hemolytic anemia
Penicillin G and V - resistance
Penicillinae in bacteria (a type of β-lactamase) cleaves β-lactam ring
aminopenicillins - drugs
- amoxillin
2. ampicillin
aminopenicillins (amoxicillin, ampicillin) - mechanism of action
same as penicillin but WIDER SPECTRUM
aminopenicillins (amoxicillin, ampicillin) - clinical use
extended spectrum penicillin: 1. H. infl 2. H. pylori 3. E. coli 4. Listeria 5. Proteus 6. Salmonella 7. Shigella 8. Entetococci MNEMONIC : HHELPSS + enterococci
aminopenicillins (amoxicillin, ampicillin) - toxicity
- hypersensitivity reactions
- rash
- pseudomembranous colitis
aminopenicillins (amoxicillin, ampicillin) - mechanism of resistance
penicillinase in bacteria (a type of β-lactamase) cleaves β-lactams ring–> combine with clavulanic acid
Penicillinase-resistant penicillins - drugs
- Dicloxacillin
- Nafcillin
- Oxacillin
- Methcillin
Penicillinase-resistant penicillins - mechanism of action
same as penicillin
NARROW SPECTRUM AND PENICILLINASE RESISTANT
Penicillinase-resistant penicillins - mechanism of penicillinase resistance
Bulky R group blocks blocks access of β-lactase to lactam ring
Penicillinase-resistant penicillins - drugs and clinical use
- Dicloxacillin2. Nafcillin 3. Oxacillin 4. Methcillin
S. aureus (except MRSA)
MRSA - mechanism of resistance
altered penicillin binding protein target site
Penicillinase-resistant penicillins - toxicity
- hypersensitivity reactions
2. interstitial nephritis
Antipseudomonals - drugs
Piperacillin, Ticarcillin
Antipseudomonals - mechansism of action
same as penicillin
Extended spectrum
Antipseudomonals - clinical use
- psudomonas spp and gram-negative robs
2. gram (-) robs
Antipseudomonals - toxicity
hypersensitivity reaction
Antipseudomonals - resistance
susceptible to penicillinase –> use with β-lactamase
β-lactamase inhibitors - drugs
- clavulanic acid
- sulbactam
- tazobactam
β-lactamase inhibitors - use
often added to penicillin antibiotics to protect the antibiotic from destruction by β-lactamase (penicillinase)
Cephalosporins - drugs
1st generation –> cefazolin, cephalexin
2nd generation –> cefoxitin, cefaclor, cefuroxamine
3rd generation –> ceftriaxone, cefotaxime, ceftazidime
4th generation –> cefepime
5th generation –> ceftraroline
Cephalosporins - mechanism of action
β- lactam drugs that inhibit cell wall synthesis but are less susceptible to penicillinases - BACTERICIDAL
organisms typically not covered by Cephalosporins?
mnemonic: LAME
Listeria, Atypicals (Chlamydia, Mycoplasma) MRSA, Entrococci
exception. Ceftaroline (5th) covers MRSA
1st generation cephalosporins - drugs and clinical use
cefazolin, cephalexin 1. gram + cocci 2. Proteus 3. E. coli 4. Klebsiella cefazolin used prior to surgery to prevent S. aureus wound infection
cefazolin used prior to surgery to
prevent S. aureus wound infection
2nd generation - drugs and clinical use
cefoxitin, cefaclor, cefuroxamine
- like 1st generation (gram + cocci, proteus, E.coli, Klebsiella)
- H. infuenzae
- Enterobacter aerogenes
- Neisseria spp
- Serratia marcescens
3rd generation - drugs and clinical use
ceftriaxone, cefotaxime, ceftazidime
serious gram (-) infections resistant to other β-lactams
- ceftriaxone –> meningitis, gonnorrhea, disseminated Lyme disease
- Ceftazimide –> Pseudomonas
4th generation - drugs and clinical use
cefepime
gram (-) organism, with high activity against Pseudomonas
2. gram (+)
5th generation - drugs and clinical use
ceftaroline 1. broad gram (+) 2. borad gram (-) INCLUDING MRSA DOES NTO COVER PSEUDOMONAS
Cephalosporins - toxicity
- hypersensitivity reactions
- autoimmune hemolytic anemia
- disulfiram-like reaction
- vitamin K deficiency
- exhibit cross-reactivity with penicillins
- Increases aminoglycosides mediated nephrotoxicity
Cephalosporins - mechanise of resistance
structural change in penicillin-binding proteins (transpeptidase)
Carbapenems - drugs
- Imipenem
- Meropenem
- Doripenem (newer)
- Ertapenem (newer)
Carbapenems - mechanism of action
broad spectrum, β-lactamase-resistant β-lactam
ALWAYS ADMINISTRATED WITH CILASTATIN (inhibitor of renal dehydropeptidase I) to decrease inactivation of drug in renal tubule –> meropenem is stable to cilastatin
cilastatin - mechansim of action
inhibitor of renal dehydropeptidase I
Carbapenems - clinical use
- Gram (+) cocci
- Gram (-) robs
- anaerobes
WIDE spectrum but significant side effects limit use of life threatening infection or after other drugs have failed
Ertapenem has limited pseudomonas coverage
Carbapenems - toxicity
- GI distress
- skin rash
- CNS toxicity (seizurs) at high plasma levels (less risk with meropenem)
Monobactams - drugs
Aztreonam
Monobactams (Aztreonam) - mechansim of action
Bind penicillin-binding proteins 3 (transpeptidas) –> blocks trasnpeptisase cross linking of peptidoglycan in cell wall –> inhibits cell wall synthesis –> Activate autolytic enzyme
LESS SUSCEPTIBLE TO β-lactamases
Monobactams (Aztreonam) - 2 special characteristics
- no cross-allergenicity with penicillins
2. Synergistic with aminoglycosides
Monobactams (Aztreonam) - clinical use
- Gram (-) robs ONLY (no anaerobesm no gram (+))
For penicillin allergic patients and those with renal insufficiency who cannot tolerate aminoglycosides
Monobactams (Aztreonam) - side effects
usually nontoxin –> occasional GI upset
Monobactams (Aztreonam) - β-lactamases
less susceptible
Carbapenems (Doripenem, Ertapenem, Imipenem, Meropenem) - β-lactamases
resistant
Antimicrobial therapy - Cell wall synthesis drugs - divided to
- Peptidogylcan synthesis drugs
2. Peptidoglycan cross linking
Antimicrobial therapy - Cell wall synthesis drugs - groups and drugs
glycopeptides:
1. Bacitracin
2. Vancomycin
Vancomycin - mechanism of action
inhibits cell wall peptidoglycan formation by binding D-ala D-ala portion of cell wall precursors
BACTERICIDAL
not susceptible to β-lactamases
Vancomycin - clinical use
gram (+) bugs only: serious Multidrug resistance organisms, including: - MRSA - S. epidermidis - Clostiridium difficle (oral) - Enterococcus species
Vancomycin - toxicity
well tolerated
- nephrotoxicity
- ototoxicity
- thrombophlebitis
- red man syndrom (diffuse flushing)
red man syndrom - appearance, caused by, solution
- diffuse flushing
- it is caused by vancomycin
- pretreatment with antihistamines and slow infusion rate
Vancomycin - mechanism of resistance
occurs in bacteria via amino acid modification of D-ala D-ala to D-ala D-lac
Antimicrobial therapy - DNA topoisomerases - drugs
Fluroroquinolones: (-FLOXACIN) + enoxacin
- CIPRO-
- NOR-
- LEVO-
- O-
- MOXI
- GEMI-
- ENOXACIN
Fluroroquinolones - drug that i not -floxacin
enoxacin
Fluroroquinolones - mechanism of action
inhibit prokaryotic enzymes topoisomerase II (DNA gyrase) and topoisomerase IV
BACTERICIDAL
Fluororoquinolones - clinical use
- gram (-) robs of urinary and GI tracts (including Pseudomonas)
- Neisseria
- some gram (+)
Fluororoquinolones - toxicity
- GI upset
- superinfections
- skin rash
4 .headache/dizziness - leg cramps and myalgias (less commonly)
- Prolonged QT
- tendonitis or tendon rupture (if >60 or prednisone)
- contraindicated in pregnancy, nursing mothers, children under eighteen –> possible damage to cartilage
Fluororoquinolones - mechanism of resistance
- chromosome encoded mutation in DNA gyrase
- plasmid mediated resistance
- efflux pumps
Antimicrobial therapy - damage DNA drug
metronidazole
metronidazole - mechanism of action
Forms toxic free radical metavolites in the bacterial cell that damage DNA.
BACTERICIDAL, ANTIPROTOZOAL
metronidazole - clinical use
- Giardia
- Entamoeba
- Trichomonas vaginalis
- Garndenella vaginalis
- Anaerobes (Bacteroides, C. difficile)
- H. pylori
metronidazole - adverse effects
- Disulfiram-like reaction (severe flushing, tachycardia, hypertension) with alcohol
- headache
- metallic taste
Daptomycin - mechanism of action
lipopeptide that disrupt cell membrane of gram (+) cocci
Daptomycin - clinical use
- S. aureus SKIN infection (esp MRSA)
- bacteremia
- endocarditis
- VRE