Math Flashcards
sinθ, cosθ,
sinθ, cosθ, tanθ = sinθ / cosθ, cotθ = cosθ / sinθ
secθ = 1 / cosθ, cscθ = 1 / sinθ
sin²θ + cos²θ
1 + tan²θ
sin²θ + cos²θ = 1
1 + tan²θ = sec²θ
1 + cot²θ = csc²θ
sin(-θ)
cos(-θ)
tan(-θ)
cot(-θ)
sec(-θ)
csc(-θ)
sin(-θ) = -sinθ
cos(-θ) = cosθ
tan(-θ) = -tanθ
cot(-θ) = -cotθ
sec(-θ) = secθ
csc(-θ) = -cscθ
sin(A ± B) =
cos(A ± B) =
sin(A ± B) = sinA cosB ± cosA sinB
cos(A ± B) = cosA cosB ∓ sinA sinB
sin(2A) =
cos(2A) =
tan(2A) =
sin(2A) = 2 sinA cosA
cos(2A) = cos²A − sin²A = 2cos²A − 1 = 1 − 2sin²A
tan(2A) = (2tanA) / (1 − tan²A)
مک لارن
e^x =
e^x = 1 + x + x²/2! + x³/3! + x⁴/4! + ⋯ = Σ (xⁿ / n!), n=0 to ∞
sin(x) =
sin(x) = x − x³/3! + x⁵/5! − x⁷/7! + ⋯ = Σ ((-1)ⁿ x^(2n+1) / (2n+1)!), n=0 to ∞
cos(x) =
cos(x) = 1 − x²/2! + x⁴/4! − x⁶/6! + ⋯ = Σ ((-1)ⁿ x^(2n) / (2n)!), n=0 to ∞
ln(1 + x) =
ln(1 + x) = x − x²/2 + x³/3 − x⁴/4 + ⋯ , |x| < 1
tan⁻¹(x) =
tan⁻¹(x) = x − x³/3 + x⁵/5 − x⁷/7 + ⋯ , |x| ≤ 1
sin⁻¹(x) =
sin⁻¹(x) = x + x³/3! + (3x⁵)/5! + (5x⁷)/7! + ⋯ , |x| ≤ 1
sinh(x) =
sinh(x) = x + x³/3! + x⁵/5! + x⁷/7! + ⋯
cosh(x) =
cosh(x) = 1 + x²/2! + x⁴/4! + x⁶/6! + ⋯
1 / (1-x) =
1 / (1-x) = 1 + x + x² + x³ + x⁴ + ⋯ , |x| < 1
sinh(x) =
cosh(x) =
tanh(x) =
coth(x) =
sech(x) =
csch(x) =
sinh(x) = (e^x - e^(-x)) / 2
cosh(x) = (e^x + e^(-x)) / 2
tanh(x) = sinh(x) / cosh(x) = (e^x - e^(-x)) / (e^x + e^(-x))
coth(x) = cosh(x) / sinh(x) = (e^x + e^(-x)) / (e^x - e^(-x))
sech(x) = 1 / cosh(x) = 2 / (e^x + e^(-x))
csch(x) = 1 / sinh(x) = 2 / (e^x - e^(-x))
cosh²(x) - sinh²(x)
cosh²(x) - sinh²(x) = 1
sech(x) =
csch(x) =
coth(x) =
sech(x) = 1 / cosh(x)
csch(x) = 1 / sinh(x)
coth(x) = 1 / tanh(x)
sinh(2x) =
cosh(2x) =
sinh(2x) = 2 sinh(x) cosh(x)
cosh(2x) = cosh²(x) + sinh²(x) = 2cosh²(x) - 1 = 1 + 2sinh²(x)
sinh⁻¹(x) = ?
ln(x + √(x² + 1))
cosh⁻¹(x) = ?
ln(x + √(x² - 1)), x ≥ 1
tanh⁻¹(x) = ?
(1/2) ln((1 + x) / (1 - x)), |x| < 1
(1 + x)^a = ?
(1 + x)^a = 1 + ax + (a(a-1)/2!)x^2 + (a(a-1)(a-2)/3!)x^3 + …
حالتهای مبهم حد
0^0
inf^0
1^inf
0inf
infinf
f-1(b) moshtagh
1/f’(a)
زاویه دو منحنی
tan teta=abs((m2-m1)/(1+m1m2))
a^3+b^3
a^3-b^3
(a+b)(a2+b2-2ab)
(a-b)(a2+b2+2ab)
تصاعد حسابی
sn
an
d
an=a1+(n-1)d
sn= n/2(a1+an)
sn=n/2(2a1+(n-1)d)
d=(an-am)/(n-m)
تصاعد حسابی
sn q an
حد تصاعد حسابی
if abs(q)<1 then lim mishe S=t1/(1-q)
sn=t1((1-q^n)/(1-q))
tn=t1*q^(n-1)
قدر نسبت تصاعد هندسی
q
q=(tn/tm)^(1/n-m)
اگر n-m زوج بود میشه مثبت منفی
جایگشت n نفر در یک صف
دور میز
در یک صف n!
دور میز (n-1)!
n شی نامتمایز در k گروه متمایز
ترکیب k-1از n+k-1
مساحت مثلث
s=(p(p-a)(p-b)(p-c))^0.5
s=0.5absinAB
p نصف محیط
مساحت چهار ضلعی محاط در دایره
((q-a)(q-b)(q-c)(q-d))^0.5
Q نصف محیط
قضیه کسینوس ها
a2=b2+c2-2abcosA
قضیه مقدار میانگین
m(b-a)<=f(b)-f(a)<=M(b-a)
m<=f’(x)<=M
∫ xⁿ dx (n ≠ -1)
(xⁿ⁺¹) / (n + 1) + C
∫ e^x dx
e^x + C
∫ a^x dx
(a^x / ln(a)) + C, (a > 0, a ≠ 1)
∫ sec²(x) dx
tan(x) + C
∫ csc²(x) dx
-cot(x) + C
∫ sec(x)tan(x) dx
sec(x) + C
∫ (1 / (1 + x²)) dx
arctan(x) + C
∫ (1 / √(1 - x²)) dx
arcsin(x) + C
∫ 1 / √(x² - 1) dx
arcosh(x) + C (for x > 1)
مرکز هندسی
x=(انتکرال ایکس اف اکیس)/(انتگرال ایکس)
y=یک دوم انتگرال اف ایکس به توان دو تقسیم بر انتکران اف ایکس
مرکز هندسی نیم دایره
0
4r/3pi
مساحت بیضی
محیط بیضی
pi.a.b
pi(a+b)
هم ارزی a^x
1+xlna
x+y+z=1
max xy2z
x=y/2=z
xyz=1
min(2x+y+z)
x/2=y=z
ضریب رشد
x=x0e^(kt)
تابع گاما
L برعکس
L(p+1) =∫t^p.e^-t
∫t^p.e^-st
L(p+1)/s^(p+1)
B(x, y) = ?
B(x, y) = Γ(x) Γ(y) / Γ(x + y)
B(x, y) = ∫
B(x, y) = ∫₀¹ tˣ⁻¹ (1 - t)ʸ⁻¹ dt
B(x, y) = sin
B(x, y) = 2 ∫₀^(π/2) sin²ˣ⁻¹(θ) cos²ʸ⁻¹(θ) dθ
∫ₐᵇ (u - a)ˣ⁻¹ (b - u)ʸ⁻¹ du =
∫ₐᵇ (u - a)ˣ⁻¹ (b - u)ʸ⁻¹ du = B(x, y) (b - a)ˣ⁺ʸ⁻¹
r^2=c/(acos^2+bsin^2)
ab<0 هذلولی
ab=0 دوخط موازی
ab>0 بیضی
b>a بیضی قایم
sin(z)
coshy.sinx+isinhycosx
cos(z)
coshycosx-isinhysinx
دایره در عدد مختلط
|z-z0|=r
r شعاع
|z-z1|+|z-z2|=2r
if |z1-z2|<2r بیضی
|z1-z2|>2r تهی
|z1-z2|=2r پاره خط واصل z1 z2
||z-z1|-|z-z2||=2r
|z1-z2|>2r هذلولی
|z1-z2|<2r تهی
|z1-z2|=2r دو تا نیم خط
|(z-z1)/(z-z2)|=k
k=1 عمود منصف z1 , z2
k>0 , k!=1 دایره آپولونیوس
ae^i0=?
a(cos0+isin0)
فاصله دو خط متنافر
d=|AB.(u1xu2)|/|u1xu2|
فاصله A از خط گذرنده از نقطه B با هادی u
d=|ABxu|/|u|
نیمساز زاویه دو بردار u , v
u/|u| + v/|v|
حجم متساوی السطوح سه بردار
هرم
|u.(vxw)|
1/6.|u.(vxw)|
صفحه ای که محورهای مختصات را قطع میکند
x/x0 + y/y0 + z/z0 =1
حجم هرم حاصل
1/6|x0.y0.z0|
فاصله دو صفحه موازی
|d-d’|/√(a2+b2+c2)
اندازه شتاب توی خم
|a|=(at^2+an^2)
مولفه قایم بردار شتاب
k(ds/dt)^2
مولفه مماسی بردار شتاب
d^2s/dt^2
خم k بر حسب x و y
برای خم
alpha(t) = (x(t),y(t))
k = |x’y”-x”y’|/((x’^2+y’^2)^3/2)
خم برای y=f(x)
k(x) = |y”|/((1+y’^2)^3/2)
k(t)
k = |vxa|/|v|^3
در نمودار قطبی k(teta)
|r2-2r’-rr”|/((r2+r’2)^3/2)