Math Flashcards
sinθ, cosθ,
sinθ, cosθ, tanθ = sinθ / cosθ, cotθ = cosθ / sinθ
secθ = 1 / cosθ, cscθ = 1 / sinθ
sin²θ + cos²θ
1 + tan²θ
sin²θ + cos²θ = 1
1 + tan²θ = sec²θ
1 + cot²θ = csc²θ
sin(-θ)
cos(-θ)
tan(-θ)
cot(-θ)
sec(-θ)
csc(-θ)
sin(-θ) = -sinθ
cos(-θ) = cosθ
tan(-θ) = -tanθ
cot(-θ) = -cotθ
sec(-θ) = secθ
csc(-θ) = -cscθ
sin(A ± B) =
cos(A ± B) =
sin(A ± B) = sinA cosB ± cosA sinB
cos(A ± B) = cosA cosB ∓ sinA sinB
sin(2A) =
cos(2A) =
tan(2A) =
sin(2A) = 2 sinA cosA
cos(2A) = cos²A − sin²A = 2cos²A − 1 = 1 − 2sin²A
tan(2A) = (2tanA) / (1 − tan²A)
مک لارن
e^x =
e^x = 1 + x + x²/2! + x³/3! + x⁴/4! + ⋯ = Σ (xⁿ / n!), n=0 to ∞
sin(x) =
sin(x) = x − x³/3! + x⁵/5! − x⁷/7! + ⋯ = Σ ((-1)ⁿ x^(2n+1) / (2n+1)!), n=0 to ∞
cos(x) =
cos(x) = 1 − x²/2! + x⁴/4! − x⁶/6! + ⋯ = Σ ((-1)ⁿ x^(2n) / (2n)!), n=0 to ∞
ln(1 + x) =
ln(1 + x) = x − x²/2 + x³/3 − x⁴/4 + ⋯ , |x| < 1
tan⁻¹(x) =
tan⁻¹(x) = x − x³/3 + x⁵/5 − x⁷/7 + ⋯ , |x| ≤ 1
sin⁻¹(x) =
sin⁻¹(x) = x + x³/3! + (3x⁵)/5! + (5x⁷)/7! + ⋯ , |x| ≤ 1
sinh(x) =
sinh(x) = x + x³/3! + x⁵/5! + x⁷/7! + ⋯
cosh(x) =
cosh(x) = 1 + x²/2! + x⁴/4! + x⁶/6! + ⋯
1 / (1-x) =
1 / (1-x) = 1 + x + x² + x³ + x⁴ + ⋯ , |x| < 1
sinh(x) =
cosh(x) =
tanh(x) =
coth(x) =
sech(x) =
csch(x) =
sinh(x) = (e^x - e^(-x)) / 2
cosh(x) = (e^x + e^(-x)) / 2
tanh(x) = sinh(x) / cosh(x) = (e^x - e^(-x)) / (e^x + e^(-x))
coth(x) = cosh(x) / sinh(x) = (e^x + e^(-x)) / (e^x - e^(-x))
sech(x) = 1 / cosh(x) = 2 / (e^x + e^(-x))
csch(x) = 1 / sinh(x) = 2 / (e^x - e^(-x))
cosh²(x) - sinh²(x)
cosh²(x) - sinh²(x) = 1
sech(x) =
csch(x) =
coth(x) =
sech(x) = 1 / cosh(x)
csch(x) = 1 / sinh(x)
coth(x) = 1 / tanh(x)
sinh(2x) =
cosh(2x) =
sinh(2x) = 2 sinh(x) cosh(x)
cosh(2x) = cosh²(x) + sinh²(x) = 2cosh²(x) - 1 = 1 + 2sinh²(x)
sinh⁻¹(x) = ?
ln(x + √(x² + 1))
cosh⁻¹(x) = ?
ln(x + √(x² - 1)), x ≥ 1
tanh⁻¹(x) = ?
(1/2) ln((1 + x) / (1 - x)), |x| < 1
(1 + x)^a = ?
(1 + x)^a = 1 + ax + (a(a-1)/2!)x^2 + (a(a-1)(a-2)/3!)x^3 + …
حالتهای مبهم حد
0^0
inf^0
1^inf
0inf
infinf
f-1(b) moshtagh
1/f’(a)