Math Flashcards

1
Q

sinθ, cosθ,

A

sinθ, cosθ, tanθ = sinθ / cosθ, cotθ = cosθ / sinθ
secθ = 1 / cosθ, cscθ = 1 / sinθ

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

sin²θ + cos²θ
1 + tan²θ

A

sin²θ + cos²θ = 1
1 + tan²θ = sec²θ
1 + cot²θ = csc²θ

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

sin(-θ)
cos(-θ)
tan(-θ)
cot(-θ)
sec(-θ)
csc(-θ)

A

sin(-θ) = -sinθ
cos(-θ) = cosθ
tan(-θ) = -tanθ
cot(-θ) = -cotθ
sec(-θ) = secθ
csc(-θ) = -cscθ

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

sin(A ± B) =
cos(A ± B) =

A

sin(A ± B) = sinA cosB ± cosA sinB
cos(A ± B) = cosA cosB ∓ sinA sinB

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

sin(2A) =
cos(2A) =
tan(2A) =

A

sin(2A) = 2 sinA cosA
cos(2A) = cos²A − sin²A = 2cos²A − 1 = 1 − 2sin²A
tan(2A) = (2tanA) / (1 − tan²A)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

مک لارن
e^x =

A

e^x = 1 + x + x²/2! + x³/3! + x⁴/4! + ⋯ = Σ (xⁿ / n!), n=0 to ∞

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

sin(x) =

A

sin(x) = x − x³/3! + x⁵/5! − x⁷/7! + ⋯ = Σ ((-1)ⁿ x^(2n+1) / (2n+1)!), n=0 to ∞

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

cos(x) =

A

cos(x) = 1 − x²/2! + x⁴/4! − x⁶/6! + ⋯ = Σ ((-1)ⁿ x^(2n) / (2n)!), n=0 to ∞

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

ln(1 + x) =

A

ln(1 + x) = x − x²/2 + x³/3 − x⁴/4 + ⋯ , |x| < 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

tan⁻¹(x) =

A

tan⁻¹(x) = x − x³/3 + x⁵/5 − x⁷/7 + ⋯ , |x| ≤ 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

sin⁻¹(x) =

A

sin⁻¹(x) = x + x³/3! + (3x⁵)/5! + (5x⁷)/7! + ⋯ , |x| ≤ 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

sinh(x) =

A

sinh(x) = x + x³/3! + x⁵/5! + x⁷/7! + ⋯

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

cosh(x) =

A

cosh(x) = 1 + x²/2! + x⁴/4! + x⁶/6! + ⋯

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

1 / (1-x) =

A

1 / (1-x) = 1 + x + x² + x³ + x⁴ + ⋯ , |x| < 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

sinh(x) =
cosh(x) =
tanh(x) =
coth(x) =
sech(x) =
csch(x) =

A

sinh(x) = (e^x - e^(-x)) / 2
cosh(x) = (e^x + e^(-x)) / 2
tanh(x) = sinh(x) / cosh(x) = (e^x - e^(-x)) / (e^x + e^(-x))
coth(x) = cosh(x) / sinh(x) = (e^x + e^(-x)) / (e^x - e^(-x))
sech(x) = 1 / cosh(x) = 2 / (e^x + e^(-x))
csch(x) = 1 / sinh(x) = 2 / (e^x - e^(-x))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

cosh²(x) - sinh²(x)

A

cosh²(x) - sinh²(x) = 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

sech(x) =
csch(x) =
coth(x) =

A

sech(x) = 1 / cosh(x)
csch(x) = 1 / sinh(x)
coth(x) = 1 / tanh(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

sinh(2x) =
cosh(2x) =

A

sinh(2x) = 2 sinh(x) cosh(x)
cosh(2x) = cosh²(x) + sinh²(x) = 2cosh²(x) - 1 = 1 + 2sinh²(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

sinh⁻¹(x) = ?

A

ln(x + √(x² + 1))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

cosh⁻¹(x) = ?

A

ln(x + √(x² - 1)), x ≥ 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

tanh⁻¹(x) = ?

A

(1/2) ln((1 + x) / (1 - x)), |x| < 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

(1 + x)^a = ?

A

(1 + x)^a = 1 + ax + (a(a-1)/2!)x^2 + (a(a-1)(a-2)/3!)x^3 + …

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

حالتهای مبهم حد

A

0^0
inf^0
1^inf
0inf
inf
inf

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

f-1(b) moshtagh

A

1/f’(a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

زاویه دو منحنی

A

tan teta=abs((m2-m1)/(1+m1m2))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

a^3+b^3
a^3-b^3

A

(a+b)(a2+b2-2ab)
(a-b)(a2+b2+2ab)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

تصاعد حسابی
sn
an
d

A

an=a1+(n-1)d
sn= n/2(a1+an)
sn=n/2(2a1+(n-1)d)
d=(an-am)/(n-m)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

تصاعد حسابی
sn q an
حد تصاعد حسابی

A

if abs(q)<1 then lim mishe S=t1/(1-q)
sn=t1((1-q^n)/(1-q))
tn=t1*q^(n-1)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

قدر نسبت تصاعد هندسی
q

A

q=(tn/tm)^(1/n-m)
اگر n-m زوج بود میشه مثبت منفی

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

جایگشت n نفر در یک صف
دور میز

A

در یک صف n!
دور میز (n-1)!

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q

n شی نامتمایز در k گروه متمایز

A

ترکیب k-1از n+k-1

34
Q

مساحت مثلث

A

s=(p(p-a)(p-b)(p-c))^0.5
s=0.5absinAB
p نصف محیط

35
Q

مساحت چهار ضلعی محاط در دایره

A

((q-a)(q-b)(q-c)(q-d))^0.5
Q نصف محیط

36
Q

قضیه کسینوس ها

A

a2=b2+c2-2abcosA

37
Q

قضیه مقدار میانگین

A

m(b-a)<=f(b)-f(a)<=M(b-a)
m<=f’(x)<=M

38
Q

∫ xⁿ dx (n ≠ -1)

A

(xⁿ⁺¹) / (n + 1) + C

39
Q

∫ e^x dx

40
Q

∫ a^x dx

A

(a^x / ln(a)) + C, (a > 0, a ≠ 1)

41
Q

∫ sec²(x) dx

A

tan(x) + C

42
Q

∫ csc²(x) dx

A

-cot(x) + C

43
Q

∫ sec(x)tan(x) dx

A

sec(x) + C

43
Q

∫ (1 / (1 + x²)) dx

A

arctan(x) + C

43
Q

∫ (1 / √(1 - x²)) dx

A

arcsin(x) + C

44
Q

∫ 1 / √(x² - 1) dx

A

arcosh(x) + C (for x > 1)

45
Q

مرکز هندسی

A

x=(انتکرال ایکس اف اکیس)/(انتگرال ایکس)
y=یک دوم انتگرال اف ایکس به توان دو تقسیم بر انتکران اف ایکس

46
Q

مرکز هندسی نیم دایره

47
Q

مساحت بیضی
محیط بیضی

A

pi.a.b
pi(a+b)

48
Q

هم ارزی a^x

49
Q

x+y+z=1
max xy2z

50
Q

xyz=1
min(2x+y+z)

51
Q

ضریب رشد

A

x=x0e^(kt)

52
Q

تابع گاما
L برعکس

A

L(p+1) =∫t^p.e^-t

53
Q

∫t^p.e^-st

A

L(p+1)/s^(p+1)

54
Q

B(x, y) = ?

A

B(x, y) = Γ(x) Γ(y) / Γ(x + y)

55
Q

B(x, y) = ∫

A

B(x, y) = ∫₀¹ tˣ⁻¹ (1 - t)ʸ⁻¹ dt

56
Q

B(x, y) = sin

A

B(x, y) = 2 ∫₀^(π/2) sin²ˣ⁻¹(θ) cos²ʸ⁻¹(θ) dθ

57
Q

∫ₐᵇ (u - a)ˣ⁻¹ (b - u)ʸ⁻¹ du =

A

∫ₐᵇ (u - a)ˣ⁻¹ (b - u)ʸ⁻¹ du = B(x, y) (b - a)ˣ⁺ʸ⁻¹

58
Q

r^2=c/(acos^2+bsin^2)

A

ab<0 هذلولی
ab=0 دوخط موازی
ab>0 بیضی
b>a بیضی قایم

59
Q

sin(z)

A

coshy.sinx+isinhycosx

60
Q

cos(z)

A

coshycosx-isinhysinx

61
Q

دایره در عدد مختلط

A

|z-z0|=r
r شعاع

62
Q

|z-z1|+|z-z2|=2r

A

if |z1-z2|<2r بیضی
|z1-z2|>2r تهی
|z1-z2|=2r پاره خط واصل z1 z2

63
Q

||z-z1|-|z-z2||=2r

A

|z1-z2|>2r هذلولی
|z1-z2|<2r تهی
|z1-z2|=2r دو تا نیم خط

64
Q

|(z-z1)/(z-z2)|=k

A

k=1 عمود منصف z1 , z2
k>0 , k!=1 دایره آپولونیوس

65
Q

ae^i0=?

A

a(cos0+isin0)

66
Q

فاصله دو خط متنافر

A

d=|AB.(u1xu2)|/|u1xu2|

67
Q

فاصله A از خط گذرنده از نقطه B با هادی u

A

d=|ABxu|/|u|

68
Q

نیمساز زاویه دو بردار u , v

A

u/|u| + v/|v|

69
Q

حجم متساوی السطوح سه بردار
هرم

A

|u.(vxw)|
1/6.|u.(vxw)|

70
Q

صفحه ای که محورهای مختصات را قطع میکند

A

x/x0 + y/y0 + z/z0 =1
حجم هرم حاصل
1/6|x0.y0.z0|

71
Q

فاصله دو صفحه موازی

A

|d-d’|/√(a2+b2+c2)

72
Q

اندازه شتاب توی خم

A

|a|=(at^2+an^2)

73
Q

مولفه قایم بردار شتاب

A

k(ds/dt)^2

74
Q

مولفه مماسی بردار شتاب

75
Q

خم k بر حسب x و y
برای خم
alpha(t) = (x(t),y(t))

A

k = |x’y”-x”y’|/((x’^2+y’^2)^3/2)

76
Q

خم برای y=f(x)

A

k(x) = |y”|/((1+y’^2)^3/2)

77
Q

k(t)

A

k = |vxa|/|v|^3

78
Q

در نمودار قطبی k(teta)

A

|r2-2r’-rr”|/((r2+r’2)^3/2)