Chapter 3 Test Flashcards
What is the slope of the secant line of the function y = −2x ^2 + 3x − 1 between x = 2 and x = 6?
-13
What is the average rate of change of the function y = 2x^ 2 + 3 between x = x1 and x = x2?
2(x2+x1)
What is the slope of the secant line of the function y = 4x^ 2 − 2x + 1 between x = x1 and x = x2?
4x2 + 4x1 − 2
What is the average rate of change of the function y = 4x^ 3 − 2 between x = x1 and x = x2?
4 (x2^2 + x2x1 + x1^2 )
What is the derivative of the function f (x) = 2x^ 2 + 3 at x ?
4x
What is the slope of the tangent line of the function f (x) = 4x ^2 − 2x + 1 at x ?
8x − 2
What is the slope of the tangent line of the function f (x) = −4x ^2 − 5x + 2 at x ?
−8x − 5
Consider the function y = x ^2 − 3x + 2. What is the slope of the tangent line at x = 2?
1
Consider the function y = x ^2 − 3x + 5.
At what value of x is the slope of the tangent line equal to 7?
5
Consider the function y = x ^2 + x + 9.
At what value of y is the slope of the tangent line equal to 5?
15
The position of a car at time t is given by the function p (t) = t ^2 + 2t − 4. What is the velocity at t = 2? Assume t ≥ 0.
6
The position of a car at time t is given by the function p (t) = t ^2 − t − 7. What is the velocity when p (t) = 5? Assume t ≥ 0.
7
The position of a car at time t is given by the function p (t) = t ^2 − 3t − 26. At what time will the velocity of the car be 11? Assume t ≥ 0.
7
The position of a car at time t is given by the function p (t) = t ^2 + 4t − 17. Where will the car be when it moves at a velocity of 10? Assume t ≥ 0.
4
Apply the definition of the derivative to differentiate the function f (x) = x.
1