Chapter 12 Practice Test Flashcards
Evaluate lim x→0 sin x/cos x −1.
The limit does not exist
Evaluate limx→∞ ln(x^100)/x
0
Evaluate limx→π ln(π−x+1)/sinx
1
Evaluate lim x→1 lnx/x^2−1
1/2
For which of the following values of c would we get lim x→0 ln(coscx)/2x^2=−1?
2
Evaluate lim x→0 2xln(x^2)
0
Evaluate lim x→∞ ^x√x
1
Evaluate lim x→0 x^2cscx.
0
Evaluate lim x→0 (cscx−1/x)
0
Evaluate the following as true or false.
Say that lim x→∞f(x)=∞ and lim x→∞g(x)=0,but that lim x→∞f(x)⋅g(x)=L, where L is positive and finite. Then lim x→∞f(1x)⋅g(1x)=1L.
false
Evaluate ∫1 −1 1/x^3 dx.
The integral diverges.
Evaluate ∫ ∞ 0 2xdx/x^2+1.
The integral diverges.
What is the value of ∫ ∞ 0 e^−x dx?
1
Evaluate ∫ ∞ 1 e^√x / 2√x dx
The integral diverges.
Evaluate the following as true or false.
∫ 3 0 dx/x−1=ln|x−1|∣∣
∣∣30=ln3−ln1=ln3
false