Chap8 : Les probabilités conditionnelles Flashcards

1
Q

p(A) + p(/A) = ?

A

1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

p(A ∪ B) = ?

A

p(A) + p(B) - p(A ∩ B)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Définition de l’espérance

A

E(X) = x1p1 + x2p2 + … + xq*pq (x sont les valeurs de X et p les probabilités associées)

ex : x peut valoir 1 000 000 € pour une loterie

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Définition de l’écart-type

A

σ(X) = √V(X)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Définition de la variance

A

V(X) = [x1 - E(X)]²p1 + … + [xq - E(X)]²pq = E(X²) - [E(X)]²

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Que vaut p(B)a (probabilité de B sachant A) ?

A

p(A ∩ B) / p(A) ( p(A) ≠ 0 )

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Dire que 2 événements A et B sont indépendants signifie que…

A

p(A ∩ B) = p(A) * p(B)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Soit B1, B2, …, Bn une partition de Ω
Que vaut p(A) ? (2 formules)

A

1) p(A) = p(A ∩ B1) + p(A ∩ B2) + … + p(A ∩ Bn)
2) p(A) = p(B1)p(A)B1 + p(B2)p(A)B2 + … + p(Bn)*p(A)Bn

How well did you know this?
1
Not at all
2
3
4
5
Perfectly