Variáveis Aleatórias Multidimensionais n=2 Flashcards

1
Q

nome de v.a. n=2

A

bidimensionais, pares aleatórios

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

função de distribuição conjunta

A

FX,Y(x,y) = P(X<=x, Y<=y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

função de distribuição marginal de X

A

FX(x) = P(X<=x) = lim (y->oo) P(X<=x, Y<=y) = lim (y->oo) FX,Y(x,y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

função de distribuição marginal de Y

A

FY(y) = P(Y<=y) = lim (x->oo) P(X<=x, Y<=y) = lim (x->oo) FX,Y(x,y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

função de probabilidade conjunta

A

fX,Y(xi,yi) = P(X=xi, Y=yi)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

função de probabilidade marginal fX

A

fX(xi) = ∑(j) P(X=xi, Y=yj)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

função de probabilidade marginal fY

A

fY(yi) = ∑(j) P(X=xj, Y=yi)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

função de probabilidade condicional fX|Y=yj(xi)

A

fX|Y (yj(xi ) = fX,Y(xi,yj) / fY(yj)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

função de probabilidade condicional fY|X=xi(yj)

A

fY|X (xi(yj)) = fX,Y(xi,yj) / fX(xi)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

função de densidade de probabilidade conjunta

A

f(x,y) tal que
F(x,y) = ∫(-oo,y) ∫(-oo,x) f(u, v)dudv

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

função de densidade de probabilidade marginais fX(x)

A

fX(x) = ∫(-oo,oo) f(x, y)*dy

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

função de densidade de probabilidade marginais fY(y)

A

fY(y) = ∫(-oo,oo) f(x, y)*dx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

v.a.c valor esperado

A

E(X) = ∫(-oo,oo) xfXdx
E(Y) = ∫(-oo,oo) yfYdy

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

função de densidade de probabilidade condicional fX|Y=y(x)

A

fX,Y(x,y) / fY(y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

função de densidade de probabilidade condicional fY|X=y(y)

A

fX,Y(x,y) / fX(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

X, Y: v.a.d.
W = g(X,Y)

A

fW(w) = P(g(X,Y)=w)) = ∑∑{(x,y):g(x,y)=w} f(x, y)

17
Q

X, Y: v.a.c.
W = g(X,Y)

A

FW(w) = P(g(X,Y)<=w)) =∫∫{(x,y):g(x,y)<=w} f(x,y)dxdy

18
Q

momento de ordem m+k

19
Q

X, Y: v.a.d.
momento de ordem m+k

A

E(X^mY^k) = ∑(i)∑(j) xi^m * xj^k f(xi,yj)

20
Q

X, Y: v.a.c.
momento de ordem m+k

A

E(X^mY^k) = ∫∫(-oo,oo) x^m * x^k f(x,y) * dx *dy

21
Q

X, Y: v.a.d.
W = g(X,Y)
valor esperado

A

E(X) = ∑(i)∑(j) g(xi,yj) * f(xi,yj)

22
Q

X, Y: v.a.c.
W = g(X,Y)
valor esperado

A

E(X) = ∫∫(-oo,oo) g(x,y) * f(x,y) * dx * dy

23
Q

V(X+Y)

A

V(X) + V(Y) + 2 * E( (X-E(X) * (Y-E(Y) )

24
Q

covariância

A

Cov(X, Y) = E( (X-E(X) * (Y-E(Y) )

25
Cov(aX, bY)
abCov(X, Y)
26
Cov(X, Y)
E(XY)-E(X)E(Y)
27
correlação entre X e Y
Cov((X-μX)/σX, (Y-μY)/σY)) = Cov(X,Y) / σX*σY
28
coeficiente de correlação de Pearson
ρ = σX,Y / σX * σY
29
Se X e Y ind.
E(XY) = E(X) * E(Y) Cov(X,Y) = 0 ρX,Y = 0
30
V(∑Xi)
= ∑ V(Xi) + 2* ∑Cov(Xi,Xj)
31
esperança condicionada discreto
E(g(X,Y)|X=x) = ∑(i) g(x,yi) * fY|X=x(yi)
32
esperança condicionada contínuo
E(g(X,Y)|X=x) = ∫(-oo,oo) g(x,yi) * fY|X=x(y) * dy
33
propriedades esperança condicionada
Y=c -> E(Y|X)=c Y<=Z -> E(Y|X) <= E(Z|X) E(aY+bZ|X)=aE(T|X)+bE(Z|X)