Valores Aleatórios Momentos Flashcards

1
Q

valor esperado (discreto)

A

E(X) = μX = μ = ∑xi * f(xi)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

valor esperado (contínuo)

A

E(X) = μX = μ = ∫(-oo,oo) x*f(x) dx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

distribuição simétrica

A

existe θ (theta) tal que:
P(X < θ-x) = P(x > θ+x) ∀x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

θ

A

centro de simetria

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Se existe θ e E(X)

A

θ = E(X)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Propriedades valor esperado
(c constante; X,Y v.a.)

A
  • E(c) = c
  • E(c * X) = c * E(X)
  • E(X + Y) = E(X) +E(Y)
  • se h(x)<=g(x), então E(h(X))<=E(g(X))
    E(aX + b) = aE(X) + b
    E(X-E(X)) = 0
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

valores esperado de X e Y com Y = g(X)

A

E(Y) = E(g(X))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

calcular E[g(x)] (fX, contínua)

A

= ∫(-oo,oo) g(x) * fX(x) * dx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

calcular E[g(x)] (fX, discreta)

A

discreta ∑g(x)*fX(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

calcular E[g(x)] (fdp ou fp de Y, discreta)

A

∑y*fY(y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

calcular E[g(x)] (fdp ou fp de Y, contínua)

A

E(Y) = ∫(-oo,oo) y * fY(y) * dy

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

momento de ordem k

A

mk = E(X^k)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

momento centrado de ordem k

A

μk = E((X-E(X))^k)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

μ1 = E(X-E(X))

A

0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

variância (definição)

A

V(X) = σ^2X = σ^2 = μ2 = E((X-
E(X))^2) = E(X^2) - (E(X))^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

variância discreta

A

∑i (xi-E(X))^2 * f(xi)

17
Q

variância contínua

A

V(X) = ∫(-oo,oo) (x - E(X))^2 * f(x) dx

18
Q

desvio padrão

A

parâmetro que caracteriza a variabilidade em torno do valor esperado: σX = σ = √ V(X)

19
Q

variância (propriedades)

A

(1) V(X) >=0
(2) V(c) = 0
(3) V(c X) = c^2 V(X)
(4) V(X/σ) = 1
(5) Se X1, …, Xn independentes, então V(X1+…+Xn) = V(X1) + … + V(Xn)

20
Q

Z normalizado ou reduzida

A

Se Z = (X - μX) / σX, então E(Z) = 0, V(Z) = 1

21
Q

p-ésimo quantil

A

ξp (“Xi”)
P(X<=ξ)>=p, P(X>=ξ)<=1-p

22
Q

s/4-ésimo quantil s=1,2,3

23
Q

s/10-ésimo quantil s=1, …, 9

24
Q

s/100-ésimo quantil s=1, …, 99

25
1/2ésimo quantil
mediana
26
média
valor esperado
27
moda
máximo relativo (mais provável)
28
2 modas
bi-modal
29
X v.a.c. F(ξp)
p = ∫(-oo, ξp) f(x) dx
30
amplitude interquartil
ξ0.75 - ξ0.25
31
coeficiente de variação
v = σ / μ
32
assimetria
γ1 = μ3 / σ^3 β1 = (γ1)^2
33
curtose ou achatamento
β2 = μ4 / σ^4 γ2 = β2 -3 = μ4 / σ^4 -3
34
X1, X2, ..., Xn v.a. independentes
∀x1, x2, ...., xn os acontecimentos {X1<=x1}, ..., {Xn<=xn} são independentes