Critical Care, Ventilation, Etc Flashcards
Inotropy
increased cardiac output
Hypovolemic Shock
<p>**low preload**
low CO
high SVR</p>
<p>Cardiogenic Shock</p>
<p>high preload
**LOW CO**
high SVR</p>
<p>Causes of Cardiogenic Shock</p>
<p>Cardiomyopathy/SHF acute MR or AS Arrthythmia (V fib or complete heart block) Brady or tachy </p>
<p>Distributive Shock</p>
<p>decreased preload
increased CO
decreased SVR</p>
<p>Causes of Distributive Shock</p>
<p>Septic Anaphylaxis Neurogenic Endocrine Drugs</p>
<p>Obstructive Shock</p>
<p>decreased preload
**decreased CO**
increased SVR</p>
<p>Causes of Obstructive Shock</p>
<p>PE or severe RHF
Tension pTx
pericardial tampaonade
restrictive/constriction</p>
<p>Respiratory Acidosis =</p>
<p>increased PCO2
| compensation is increasing bicarb</p>
Respiratory Alkalosis =
decreased PCO2
compensate by decreasing hco3
Metabolic Acidosis =
decreased bicarb
copenensate by decreasing Co2
Metabolic Alkalosis=
increased bicarb
compensate by increasing co23
Delta Gap
AG-12/24-Bicarb;
<1 NGMA;
>1 met alkalosis
Winter’s formula
pco2= 1.5xbicarb + 8 +/-2
Metabolic Alkalosis with hypochloriduria/fluid responsive
vomiting
NG suction
over diuresis
post hypercapnia
<p>ARDS- Berlin Definition</p>
<p>Timing w/in 1 week of symptoms/insult Bilateral opacities Edema (resp failure not fully explained by cardiac failure or volume overload) Poor Oxygenation </p>
<p>Oxygenation Criteria for ARDS - Mild</p>
<p>200-300 PaO2/FiO2 w/ PEEP or CPAP >5</p>
<p>Oxygenation Criteria for ARDS- Moderate</p>
<p>100-200 PaO2/FiO2 w/ PEEP >5</p>
<p>Oxygenation Criteria for ARDS- Severe</p>
<p>Pao2/fio2 <100 w/ peep>5</p>
<p>Stages of ARDS</p>
<p>Exudative
Fibroproliferative
Recovery</p>
<p>Exudative Phase of ARDS</p>
<p>fluid, protein, and inflamm cells leave alveolar capillaries and accumulate in airspace resulting in decreased pulmonary compliance and VQ mismatch (both physiologic shunting and dead space)</p>
<p>Fibroproliferative Phase of ARDS</p>
<p>Chronic inflammation causes connective tissue to proliferates in response to initial injury causing fibrosis. Pulmonary HTN may develop as a result</p>
<p>Recovery Phase of ARDS</p>
<p>Lung reorganizes as the aveloar epithelila barrier is restored. Gradual improvement of lung function over 6-12 months</p>
<p>TV in ARDS</p>
<p>ideal is 6ml/kg </p>
<p>PEEP in ARDS</p>
<p>no difference in outcomes in low vs high PEEP, recommend only using high PEEP in severe ARDS</p>
<p>Steroids in ARDS</p>
<p>no clear evidence
| increased mortality if given after 14+ days (fibroliferative phase)</p>
<p>HFNC in ARDS</p>
<p>decreases intubation </p>
<p>Cisatricurium in ARDS</p>
<p>given in severe ARDS that presented within 48 hours </p>
<p>Agitation in ICU- first line</p>
<p>propofol
| dexmedetomadine</p>
<p>Propofol AE</p>
<p>hyperTG --> pancreatitis
Infusion syndrome w/ lactic acidosis, liver and renal failure, GREEN URINE
</p>
<p>Vascular tone=</p>
<p>resistance</p>
<p>alpha 1&amp;2</p>
<p>blood vessels
| VASOCONSTRICT</p>
<p>beta one</p>
<p>myocardium
| inotropy/chronotropy</p>
<p>Beta two</p>
<p>blood vessels
| vasodilation</p>
<p>V1</p>
<p>blood vessels
| vasoconstriction</p>
<p>NE- what receptors</p>
<p>alpha > beta 1
| Increase SVR w/ slight increase in CO</p>
<p>NE- adverse effects</p>
<p>arrhythmias</p>
<p>Ne- use</p>
<p>first line septic shock</p>
<p>Phenylephirne</p>
<p>alpha one (increase SVR)</p>
<p>Epi</p>
<p>b1 / b2 --> alpha one
| increased SVR w/ higher dose</p>
<p>Phenylephinephrine use</p>
<p>use if arrhythmias w/ NE or as adjunct</p>
<p>Dopamine</p>
<p>D --> B1 --> alpha one</p>
<p>Vasopressin</p>
<p>V1, vasoconstriction
adjunct
high doses decrease UOP</p>
Dobutamine receptors
B1 and B2
increase inotropy, chronotropy
vasodilation and afterload reduce
<p>Dobutamine AE</p>
<p>dysrhythmia, hypotension</p>
Dobutamine indications
<p>cardiogenic shock and HTN
| better w/ RF patients</p>
Milirinone
PD3 inhibitor
inotropy, profound systemic and pulmonary vasodilation
use if PAH/RHF
<p>First line for anaphylaxis shock</p>
<p>EPI</p>
<p>Compliance =</p>
<p>Volume/Pressure</p>
<p>Alveolar Ventilation=</p>
<p>(TV-dead space) x RR</p>
<p>BiPaP- how it works</p>
<p>Inspiratory pressure / PEEP (IPAP and EPAP)
| backup respiratory rate</p>
<p>Peak Inspiratory Pressure</p>
<p>pressure required to deliver TV</p>
<p>Plataea Pressure</p>
<p>pressure required to distend the lung
measured during inspiratory phase
measure of compliance!</p>
<p>PEEP</p>
<p>pressure applied during exhalation
| increases recruitment of collapsed alveoli </p>
<p>Assist Control</p>
<p>breaths triggered by preset machine rate or negative pressure/patient effort
preset rate acts as a backup
overbreathing, CO2 is high, can develop mild resp alk
</p>
<p>SIMV</p>
<p>combines spontaneous breaths with ACV breaths
mandatory minimum resp rate is set
Set rate gives you TV for those, for generated breathes you determine TV</p>
<p>Problems when increasing PEEP</p>
<p>decrease venous return
increase PIP
increase risk for barotrauma</p>
<p>Urine Anion Gap</p>
<p>greater then 0 --> RTA type 1 and 4
excretion of ammonium chloride impaired
RTA, reanl failure, HYPOaldosteronism</p>
<p>Mechanism behind Urine Anion Gap</p>
<p>Acidosis causes secretion of NH4+
then Cl- is secreted for balance
use Cl- for measurement of acid excretion
Urine NA + K - Cl</p>
<p>Differential for Elevated Osmolar Gap</p>
<p>greater than calculated, consider methanol ethylene glycol isopropyal alcohol toluene </p>
<p>paO2 should be</p>
<p>greater than 60</p>
inspiration and thoracic pressure
inspiration –> decrease thoracic pressure
increases venous return to the heart
<p>IVC as measure of hydration</p>
<p>collapse = dehydration; correlate to CVP
less than 1.5 cm = CVP of 0-5
respiratory= total collapse</p>
<p>Acid/Base: Timeline for respiratory vs metabolic compensation</p>
<p>hours for respiratory
| 2-5 days for metabolic</p>
Acid/Base: Disorders where pH can normalize?
classically: chronic resp alkalosis
some evidence for chronic resp acidosis
AGMA: Why does the gap increase physiologically?
Bicarb decreases (have more cations)
AGMA: Why does albumin matter?
weak acid
AGMA + Normal Lactate, consider…..
alcoholic ketoacidosis
ketonuria measures acetoacetate NOT B-hydroxyl which is predominate in alcohlid
AGMA: D-lactic acidosis
short bowel syndrome
Physiology behind NAGMA
decrease in bicarb with increase in chloride ions
= hyperchloremic metabolic acidosis
NAGMA loss of bicarb due to
GI losses: diarrhea, utereal diversion
Renal loss: RTA, early renal failure
ACIDOSIS: GOLD
Glycols-ethylene, proplene
5-Oxoproline
L-lactate, D-Lactate
ACIDOSIS: MARRK
Methanol Aspirin Renal Failure Rhabdo Ketoacidosis
Metabolic Alkalosis: Chloride Responsive Mechanism
blood volume reduced –> RAAS activated –> reabsorb Na, Cl, Bicarb
<p>Intubation- preinduction agents</p>
<p>fentanyl (pain)
| lidocaine (prevent bronchospasm, ICP)</p>
<p>Intubation- induction agent</p>
<p>ketamine, etomidate, versed, propofol</p>
<p>Intubation- paralytic</p>
<p>roc or succ</p>
<p>Internal Jugular Vein VASCULAR anatomy</p>
<p>IJV + subclavian --> brachiocephalic --> SVC --> RA</p>
<p>Internal Jugular Vein anatomy for central line placement</p>
<p>- between two heads of SCM and clavical
| - lateral and anterior to carotid a</p>
<p>IJV Central Line Pros and Cons</p>
<p>lower risk of PTX, infection
| however can puncture carotid, CI in CEA</p>
<p>Subclavian Central Line Pros and Cons</p>
<p>more comfortable and lower infection risk
| highest PTX risk</p>
<p>Subclavian Line Contraindications</p>
<p>coagulopathy
SVC thrombosis
upper thoracic trauma</p>
<p>Subclavian Line Insertion Anatomy</p>
<p>Intraclavicular
| seprated from subclavian a by scaline muscle</p>
<p>Femoral Line Pros and Cons</p>
<p>good for coagulopathics
| no neeed for CXR</p>
<p>Femoral Line contraindications</p>
<p>DVTs, IVC filter, local infection </p>
<p>Indications of low cardiac output in shock</p>
<p>narrow pulse pressure
cool extremities
delayed cap refill</p>
<p>Indications of high cardiac output in shock</p>
<p>wide pulse pressure +/- low diastolic pressure
warm extremities
bounding pulses
</p>
<p>Initial CPAP settings</p>
<p>5-10</p>
Initial BiPAP settings
10/5
<p>GCS - Basics</p>
<p>Eye - 4
Verbal - 5
Motor - 6
</p>
<p>GCS: Eyes</p>
<p>none -1 pain - 2 verbal -3 spontaneous -4 </p>
<p>GCS: Verbal</p>
<p>Intubated/no response -1 Incomprehsnible sounds 2 Inappropriate owrds 3 COnfused 4 Oriented 5 </p>
<p>GCS: Motor</p>
<p>none-1 extension to pain-2 flexion to pain-3 withdrawal-4 localize-5 commands-6</p>
<p>Ground Glass Opacity Differential</p>
<p>- inflamm
- edema
- neoplasm
- interstitial thickening
- fibrosis </p>
<p>Nodular Pattern on CXR Ddx</p>
<p>Granulomatous Disease
Pneumococosis
Malignancy</p>
<p>Air Bronchogram =</p>
<p>Airspace disease</p>
<p>Airspace Disease DDx</p>
<p>Water/Pulm Edema Pus: Infectious or inflammation Blood: Diffuse alveolar hemorrhage Cells: carcinoma, lymphoma Lipoprotein: pulmonary alveolar proteinosis</p>
<p>Reticular Pattern Ddx</p>
<p>Interstitial pulm edema IPF Granulomas Interstitial PNA Collagen Vascular Disease Pneumoconiosis</p>
<p>Navigating the vent problems- how to use peak and plateau</p>
<p>increased peak and plateau = compliance issue
| increased peak w/ normal/decreased plateau= airway problem</p>
<p>Plateau pressure=</p>
<p>pressure in alveoli at end of inspiration
| measure w/ inspiratory hold</p>
<p>RSBI</p>
<p>RR/TV(L)
less than 105 to extubate
</p>
<p>NIF and weaning</p>
<p>less than 20 </p>
<p>ABCs of ventilator weaning</p>
<p>patient is AWAKE
patient is BREATHING
patient can gag/COUGH
</p>
<p>Status epilepticus- what to give initially</p>
<p>4mg lorazepam
| load with pheny or fospheny at 20mg/kg </p>
<p>Goal ICU Blood Glucose</p>
<p>140-180</p>
<p>Trophic Feeds</p>
<p>if on pressors
| 10-20cc/hr</p>
<p>Altered mental status mmnemoic</p>
<p>DONT
Dextrose, Oxygen, Narcan 0.4, Thiamine 100mg IV
</p>
<p>Oxygen content of room air</p>
<p>21%</p>
<p>Nasal Canula- Oxygen Delivery</p>
<p>roughly 4% per L
| 1-6L; 24-44%</p>
<p>Venturi Mask</p>
<p>FiO2 0.24-0.5, Variable LPM</p>
<p>Non-Rebreather</p>
<p>10-15L (flow has to keep bag from deflating), FiO2 .7-1.0 (85-95%)</p>
<p>Goals of High Flow Nasal Oxygen</p>
<p>Eliminate dead space
| Reservoir of FiO2 in nasal cavity</p>
<p>LPM w/ High Flow Nasal Oxygen</p>
<p>8L in pediatrics
| 60L in adults</p>
<p>Warm Shock =</p>
<p>Cap Refill <2 Secs, warm, flushed
Bounding pulse, tachycardia
Normotension w/ wide pulse pressure</p>
<p>Cold Shock =</p>
<p>Cap Refill >2 seconds, cold clammy
tachy or brady
hypotension </p>