Thermodynamics 2 Flashcards

1
Q

The 2nd Law of Thermodynamics

A

The entropy of the universe tends to increase

S > 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Entropy

A

dS = dQ/T

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

S total

A

S total = Ssystem + Ssurroundings

Stotal = dSh + dSc = -Qc/Th + Qc/Tc = Qc(Th-Tc)/Th•Tc

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

The 3rd Law of Thermodynamics

Nernst heat theorem

A

The entropy S of all perfect crystalline substances is the same at absolute zero

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Entropy change at the transition

A

dS = dH/T

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Difference in entropy

A

S2 - S1 = dH/T = Cp(dT/T) = Cp(lnT)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Calculate absolute entropy

A

dS = n(Cp/T)dt at constant P

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Debye Extrapolation

A

At low T, Cv = Cp = aT^3

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Joule’s Law

A

The internal energy of a perfect gas depends only on the temperature

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Ideal gasses and solutions

A
dUt = 0
(dU/dV) = 0
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Joule’s Law

A

(dU/dV)t = (dU/dP)t = dU/dT

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Gay-Lussac’s law

A

The volume of a given mass of gas is directly proportional to its temperature, if the pressure remains constant

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Gay-Lussac’s Law

A

(V2/V1)p = (T2/T1)p

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Boyle-Mariotte’s Law

A

The volume of a given mass of gas varies inversely with the pressure, if the temperature remains constant

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Endothermic thermochemistry

A

If heat is absorbed during a reaction, dH and dU are positive, and the reaction is said to be endothermic.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Exothermic thermochemistry

A

If heat is given off, dH and dU are negative, and the reaction is exothermic

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Hess’s Law

A

If a reaction can be broken down into a number of steps, dH of the overall process is equal to the sum of the enthalpy changes in each step

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Standard heat of formation

A

The standard enthalpy of formation of compounds at 1 atm and 25 Celsius, and the substance is in a stable physical state under these conditions. It is 0 for elements

19
Q

Standard enthalpy of reaction

A

The difference in enthalpy beteeen the products and the reactants, when both products and reactants are in their standard state at 298K

20
Q

Gives free energy

A

G = H - TS

21
Q

If dG < 0

A

Then the reaction is spontaneous

22
Q

If dG > 0

A

Then the reaction is not spontaneous

23
Q

If dG = 0

A

Then the system is in a state of equilibrium

24
Q

If dS > 0 & dH <0

A

Spontaneous at all temperatures

25
If dS > 0 & dH > 0
Spontaneous at high temperatures
26
If dS < 0 & dH < 0
Spontaneous at low temperatures
27
If dS < 0 & dH > 0
Nonspontaneous at any temperatures
28
Standard free energy
dGrx = sum of dGproducts - sum of dGreactants
29
Chemical potential
u = dG/dn dGb = (u)b•dnb When phase equilibrium is achieved, the chemical potential of a component is the same in both phases.
30
Gibb's phase rule
``` f = c - p + 2 c = # of components in the system p = # of phases present f = # of degrees of freedom of a system ```
31
1 component system Gibb's phase rule I.e. Pure water f = 3 - p If p = 1( the system contains 1 of base), f = 2
The system is bivariant
32
1 component system Gibb's phase rule f = 3 - p If p = 2(the system has two phases), f = 1
The system is univariant
33
1 component system Gibb's phase rule f = 3 - p If p = 3(three phases), f = 0
The system is invariant
34
Bivariant
P and T can be modified independently without altering the # of phases
35
Univariant
Between two phases on phase equilibria diagram = along the line For a given temperature, there is only one pressure at which two phases may exist
36
Invariant
A point at which all phases are simultaneously at equilibrium aka the triple point no degrees of freedom
37
Colligative properties
The physical properties of dilute solutions that depend only on the number of molecules in solution, not their chemical nature.
38
Colligative properties
Freezing point depression, Boiling point elevation, Osmotic pressure
39
Raoult's law
When a solute is added to a pure solvent, the vapor pressure above the solvent decreases
40
Raoult's Law
``` P1 = ix1•P1^o P1 = vapor pressure of the solvent with added solvent X1 = mole fraction of solvent P1^o = vapor pressure of pure solvent I = # of miles after the solution/# of miles before solution ```
41
Freezing point depression dTf
``` dTf = Kf•m(solute)•i K = constant m = mol solute/ kg of solvent ```
42
Boiling point elevation dTb
dTb = Akbar•m(solute)•i
43
Osmotic pressure (pi)
``` pi = CRT C = concentration of the solution T = temp in kelvin ```