Techniques de l'inférence statistique Flashcards

1
Q

Qu’est-ce qu’une expérience d’échantillonnage?

A

C’est l’inventaire de toutes les moyennes échantillonnales possibles de taille n dans une population.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Qu’est-ce qui explique que les moyennes échantillonnales d’une population ne sont pratiquement jamais les mêmes?

A

Les moyennes varient en fonction de l’échantillon sélectionné. Cette différence est l’erreur type de la moyenne.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Vrai ou faux? La moyenne des moyennes échantillonnales est égale à la moyenne de la population.

A

Vrai

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Sachant que l’erreur dans la population est de 16, à combien peut-on estimer la variance de l’erreur type de la moyenne pour un échantillon de n=27?

A

𝜎𝑋̅= 3,08
Elle se calcule en divisant l’écart type de la population par la racine carré de la taille n de l’échantillon.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Quel est l’effet d’un échantillon n de plus grande taille sur l’erreur type de la moyenne?

A

Plus l’échantillon augmente, plus l’erreur type de la moyenne diminue (loi des grands nombres), car plus il y a d’observations, moins il y a de variation entre les moyennes échantillonnales.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Dans quel contexte est-il possible de tirer une probabilité d’une distribution d’échantillonnage?

A

Si les échantillons sont aléatoires

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Vrai ou faux? Selon le théorème central limite, la variation entre les moyennes des échantillons sera plus petite que la variation entre les individus de la population.

A

Vrai; on peut le prouver par ce calcul 𝜎/√𝑛

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Quelle est la formule de la cote Z dans le calcul de probabilité pour un échantillon unique?

A

𝑍=(𝑋̅−𝜇)/(𝜎/√𝑛)

ou x barre est la valeur dont on cherche la probabilité

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Vrai ou faux? Pour obtenir des probabilités à partir de la distribution d’échantillonnage d’une moyenne, il est nécessaire que la population soit distribuée normalement.

A

Faux; la population peut suivre n’importe quelle distribution, mais ses moyennes échantillonnales suivront toujours une loi normale.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Vrai ou faux? Pour trouver une probabilité à partir d’une distribution échantillonnage d’une moyenne, la variance de la population doit être connue.

A

Vrai; il en est de même pour la moyenne de la population. En effet, on veut trouver la probabilité qu’une valeur se trouve dans la population, on doit nécessairement en connaitre les paramètres. Si la variance est inconnue, il faudra utiliser un intervalle de confiance pour l’estimer.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Quel est le meilleur estimateur pour une moyenne de population dans le calcul de l’intervalle de confiance?

A

La moyenne échantillonnale

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Que représente la cote Z dans le calcul d’un intervalle de confiance?

A

Le coefficient de confiance (lorsque n>30)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Afin de rendre plus probable le rejet de l’hypothèse nulle, on doit
a) diminuer le seuil de signification a
b) augmenter le seuil de signification a

A

b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Quelles sont les étapes d’un test d’hypothèse? (4)

A

1- Formulation des hypothèses
2- Choix du seuil de signification
3- Formulation de la règle de décision
4- Calculer et interpréter les résultats

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Pour réduire le risque de commettre une erreur de type 1, on doit
a) augmenter la taille de l’échantillon et choisir un seuil de signification plus petit
b) augmenter la taille de l’échantillon et choisir un seuil de signification plus grand
c) diminuer la taille de l’échantillon et choisir un seuil de signification plus grand
d) diminuer la taille de l’échantillon et choisir un seuil de signification plus petit

A

d)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Vrai ou faux? Il est plus probable de faire une erreur de type 1 à mesure que la variance de la population diminue.

A

Vrai; l’intervalle de confiance sera plus petit

17
Q

Quelles sont les étapes pour calculer un intervalle de confiance pour la moyenne d’une population?

A

1- Calculer la valeur 𝑧(1−𝛼/2) où 𝛼=0,05
2- Calculer l’erreur type 𝜎𝑋̅ =√(𝜎^2/𝑛)
3- Calculer la borne inférieure et la borne supérieure de l’intervalle de confiance (formule dispo à l’examen)

18
Q

Quelle est la formule à utiliser lors d’un test d’hypothèse t sur échantillons appariés?

(pas sur la feuille de formules)

A

𝑡= (𝑑̅ −𝜇𝑑 )/(𝑠𝑑/√𝑛)

19
Q

Qui suis-je? Variation naturelle dans la composition des échantillons.

A

Erreur d’échantillonnage