Complexes + Trigonométrie Flashcards

1
Q

définition imaginaire pur

A

Re(z)=0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

formule module de z + propriétés

A

lzl=√(Re(z)^2 + Im(z)^2) = lzbarrel
lzl = √(zzbarre)
lz1
z2l = lz1l*lz2l

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

forme exponentielle / forme algébrique d’un complexe

A

rexp(iθ) / r(cos(θ) + isin(θ))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

formule de Moivre

A

(exp(iθ))^n = exp( in*θ)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

formules d’Euler

A

cos(θ)= (exp(iθ)+exp( -iθ)) /2

sin(θ)=(exp(iθ) - exp( -iθ) ) / 2i

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q
formules trigonométriques:
cos(a+b)
sin(a+b)
cos(a-b)
sin(a-b)
sin(pi-θ)
sin(pi+θ)
cos(pi-θ)
cos(pi+θ)
sin(pi/2 - θ)
sin(pi/2 + θ)
cos(pi/2 - θ)
cos(pi/2 +θ)
cos^2(θ) + sin^2(θ) 
sin(2θ)
cos(2θ)
A
cos(a+b)= cos(a)cos(b)-sin(a)sin(b)
sin(a+b)=cos(a)sin(b)+cos(b)sin(a)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
sin(a-b)=cos(a)sin(b)-cos(b)sin(a)
sin(pi-θ)=sin(θ)
sin(pi+θ)= -sin(θ)
cos(pi-θ)= -cos(θ)
cos(pi+θ)= -cos(θ)
sin(pi/2 - θ)=cos(θ)
sin(pi/2 + θ)=cos(θ)
cos(pi/2 - θ)=sin(θ)
cos(pi/2 +θ)=-sin(θ)
cos^2(θ) + sin^2(θ) = 1
sin(2θ)= 2 cos(θ)sin(θ)
cos(2θ)= cos^2(θ) - sin^2(θ) = 2 cos^2(θ) - 1 = 1-2sin^2(θ)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Inégalité triangulaire

A

llz1l-lz2ll ≤ lz1+z2l ≤ lz1l + lz2l

How well did you know this?
1
Not at all
2
3
4
5
Perfectly