Trigo réciproque Flashcards

1
Q

arcsin(x) ∈

A

􏰘[−π/2, π􏰙/2]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

arcsin x n’a aucun sens si

A

x ∈ pas à [-1;1]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

on a la simplification arcsin(sinx)=x que si

A

x ∈ à 􏰘[−π/2, π􏰙/2]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

∀x ∈ ]−1,1[ , arcsin′(x) =

A

1

√1−x^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

arccosx ∈

A

[0, π]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

arccos x n’a aucun sens si

A

x ∈ pas à [-1;1]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

on a la simplification arccos(cosx)=x que si

A

x ∈ à [0, π]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

∀x ∈ ]−1, 1[ , arccos′(x) =

A

-1

√1−x^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

arctanx ∈

A

􏰘]−π/2, π􏰙/2[

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

arctan x est défini

A

pour tout x ∈ R

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

on a la simplification arctan(tanx)=x que si

A

x ∈ 􏰘]−π/2, π􏰙/2[

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

∀x ∈ R , arctan′(x) =

A

1

1+x^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

sin (arccos x) =

A

√1 − x2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

cos (arcsin x)

A

= √1 − x^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

cos(arctanx)

A

1

√1+x^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

sin(arctanx)

A

x

√1+x^2

17
Q

arccos (x) + arcsin (x) =

A

π/ 2

18
Q

arccos (x) + arccos (−x) =

A

π

19
Q

arctanx+arctan1/x =

A

signe(x)*π/2

20
Q

Si f est une bijection de I sur J, alors la courbe de f−1 est

A

symétrique de la courbe de f par rapport à la droite ∆ d’équation : y = x.

21
Q

si f continue réalise une bijection de l’intervalle I sur l’intervalle J, alors f−1 est

A

f−1 est continue sur J

22
Q

Toute fonction f continue strictement monotone sur un intervalle I réalise

A

une bijection de I sur J = f ⟨I⟩