Primitive/intég Flashcards

1
Q

on dit qu’une fonction définie sur l’intervalle I est de classe C1 sur I lorsque

A

f est dérivable sur I et sa dérivée f ′ est continue sur I

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

2 techniques d’integ

A

integ par partie : Su′(x)v(x)dx = u(x)v(x) - Su(x)v′(x)dx
chgt variable : ATTENTION BORNES
il faut que les fonction dont on utilise la dérivée soient C1 dans l’intervalle concerné

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

mx + p dx

ax^2+bx+c

A

1er cas : 2 racines réelles => décomposition ele simples
2eme cas : 1) on fait sortir dérivée du déni au num : 2xa + b
2) on utilise la forme cano (x - p)^2 + q, puis primitive arctan

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Sdx =

√a2 −x2

A

arcsin x/a +C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Sdx =

x2 +a2

A

1/a arctanx/a + C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Sdx =

√x2 +a2

A

ln x+ √x2 +a2 +C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Sdx =

x2 −a2

A

1/2a ln(x-a)/x+a + C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Sdx =

√x2 −a2

A

ln x+ √x2 -a2 +C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Sx^αdx

A

x^α+1 +C

α+1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

∫1/x dx=

A

ln|x|+C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

∫dx/xβ

A

-1 1 + C

(β−1 )x^β−1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly