RENAL - Drugs Flashcards
Mannitol (mechanism)
Mechanism:
- Osmotic diuretic.
- Increase tubular fluid osmolarity –> increased urine flow, decreased intracranial/intraocular pressure
Use:
- Drug overdose
- Elevated intracranial/intraocular pressure
Toxicity:
- Pulmonary edema
- Dehydration
- Contraindicated in anuria, HF
Mannitol (use)
Mechanism:
- Osmotic diuretic.
- Increase tubular fluid osmolarity –> increased urine flow, decreased intracranial/intraocular pressure
Use:
- Drug overdose
- Elevated intracranial/intraocular pressure
Toxicity:
- Pulmonary edema
- Dehydration
- Contraindicated in anuria, HF
Mannitol (toxicity)
Mechanism:
- Osmotic diuretic.
- Increase tubular fluid osmolarity –> increased urine flow, decreased intracranial/intraocular pressure
Use:
- Drug overdose
- Elevated intracranial/intraocular pressure
Toxicity:
- Pulmonary edema
- Dehydration
- Contraindicated in anuria, HF
Acetazolamide (mechanism)
Mechanism:
- Carbonic anhydrase inhibitor
- Self limited NaHCO3 diuresis
- Decreased total body HCO3- stores
Use:
- Glaucoma
- Urinary alkalinization
- metabolic alkalosis
- Altitude sickness
- Pseudotumor cerebri
Toxicity:
- Hyperchloremic metabolic acidosis
- Paresthesias
- NH3 toxicity
- Sulfa allergy
Acetazolamide (Use)
Mechanism:
- Carbonic anhydrase inhibitor
- Self limited NaHCO3 diuresis
- Decreased total body HCO3- stores
Use:
- Glaucoma
- Urinary alkalinization
- metabolic alkalosis
- Altitude sickness
- Pseudotumor cerebri
Toxicity:
- Hyperchloremic metabolic acidosis
- Paresthesias
- NH3 toxicity
- Sulfa allergy
Acetazolamide (Toxicity)
Mechanism:
- Carbonic anhydrase inhibitor
- Self limited NaHCO3 diuresis
- Decreased total body HCO3- stores
Use:
- Glaucoma
- Urinary alkalinization
- metabolic alkalosis
- Altitude sickness
- Pseudotumor cerebri
Toxicity:
- Hyperchloremic metabolic acidosis
- Paresthesias
- NH3 toxicity
- Sulfa allergy
Furosemide (mechanism)
Sulfonamide loop Diuretics
Mechanism:
-
Na+/K+/2Cl- cotransporter inhibitor
- Abolishes concentration gradient of medulla
- Stimulate PGE release: vasodilation of afferent arteriole (inhibit with NSAIDS)
- Increase Ca++ excretion
Use:
- Edematous states (HF, Cirrhosis, nephrotic syndrome, pulmonary edema)
- Hypertension
- Hypercalcemia
Toxicity: (OH DANG)
- Ototoxicity
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- Nephritis (interstitial)
- Gout
Furosemide (use)
Sulfonamide loop Diuretics
Mechanism:
- Na+/K+/2Cl- cotransporter inhibitor
- Abolishes concentration gradient of medulla
- Stimulate PGE release: vasodilation of afferent arteriole (inhibit with NSAIDS)
- Increase Ca++ excretion
Use:
- Edematous states (HF, Cirrhosis, nephrotic syndrome, pulmonary edema)
- Hypertension
- Hypercalcemia
Toxicity: (OH DANG)
- Ototoxicity
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- Nephritis (interstitial)
- Gout
Furosemide (toxicity)
Sulfonamide loop Diuretics
Mechanism:
- Na+/K+/2Cl- cotransporter inhibitor
- Abolishes concentration gradient of medulla
- Stimulate PGE release: vasodilation of afferent arteriole (inhibit with NSAIDS)
- Increase Ca++ excretion
Use:
- Edematous states (HF, Cirrhosis, nephrotic syndrome, pulmonary edema)
- Hypertension
- Hypercalcemia
Toxicity: (OH DANG)
- Ototoxicity
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- Nephritis (interstitial)
- Gout
Bumetanide (mechanism)
Sulfonamide loop Diuretics
Mechanism:
-
Na+/K+/2Cl- cotransporter inhibitor
- Abolishes concentration gradient of medulla
- Stimulate PGE release: vasodilation of afferent arteriole (inhibit with NSAIDS)
- Increase Ca++ excretion
Use:
- Edematous states (HF, Cirrhosis, nephrotic syndrome, pulmonary edema)
- Hypertension
- Hypercalcemia
Toxicity: (OH DANG)
- Ototoxicity
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- Nephritis (interstitial)
- Gout
Bumetanide (use)
Sulfonamide loop Diuretics
Mechanism:
- Na+/K+/2Cl- cotransporter inhibitor
- Abolishes concentration gradient of medulla
- Stimulate PGE release: vasodilation of afferent arteriole (inhibit with NSAIDS)
- Increase Ca++ excretion
Use:
- Edematous states (HF, Cirrhosis, nephrotic syndrome, pulmonary edema)
- Hypertension
- Hypercalcemia
Toxicity: (OH DANG)
- Ototoxicity
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- Nephritis (interstitial)
- Gout
Bumetanide (toxicity)
Sulfonamide loop Diuretics
Mechanism:
- Na+/K+/2Cl- cotransporter inhibitor
- Abolishes concentration gradient of medulla
- Stimulate PGE release: vasodilation of afferent arteriole (inhibit with NSAIDS)
- Increase Ca++ excretion
Use:
- Edematous states (HF, Cirrhosis, nephrotic syndrome, pulmonary edema)
- Hypertension
- Hypercalcemia
Toxicity: (OH DANG)
- Ototoxicity
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- Nephritis (interstitial)
- Gout
Torsemide (mechanism)
Sulfonamide loop Diuretics
Mechanism:
-
Na+/K+/2Cl- cotransporter inhibitor
- Abolishes concentration gradient of medulla
- Stimulate PGE release: vasodilation of afferent arteriole (inhibit with NSAIDS)
- Increase Ca++ excretion
Use:
- Edematous states (HF, Cirrhosis, nephrotic syndrome, pulmonary edema)
- Hypertension
- Hypercalcemia
Toxicity: (OH DANG)
- Ototoxicity
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- Nephritis (interstitial)
- Gout
Torsemide (use)
Sulfonamide loop Diuretics
Mechanism:
- Na+/K+/2Cl- cotransporter inhibitor
- Abolishes concentration gradient of medulla
- Stimulate PGE release: vasodilation of afferent arteriole (inhibit with NSAIDS)
- Increase Ca++ excretion
Use:
- Edematous states (HF, Cirrhosis, nephrotic syndrome, pulmonary edema)
- Hypertension
- Hypercalcemia
Toxicity: (OH DANG)
- Ototoxicity
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- Nephritis (interstitial)
- Gout
Torsemide (toxicity)
Sulfonamide loop Diuretics
Mechanism:
- Na+/K+/2Cl- cotransporter inhibitor
- Abolishes concentration gradient of medulla
- Stimulate PGE release: vasodilation of afferent arteriole (inhibit with NSAIDS)
- Increase Ca++ excretion
Use:
- Edematous states (HF, Cirrhosis, nephrotic syndrome, pulmonary edema)
- Hypertension
- Hypercalcemia
Toxicity: (OH DANG)
- Ototoxicity
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- Nephritis (interstitial)
- Gout
Ethacrynic acid (mechanism)
Loop Diuretic: Phenoxyacetic acid derivative
Mechanism_:_
- Inhibit Na/K/2Cl
Use:
- Diuresis in patients with sulfa alergies
Toxicity:
- Ototoxicity
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- Nephritis (interstitial)
- Gout
Ethacrynic acid (Use)
Loop Diuretic: Phenoxyacetic acid derivative
Mechanism_:_
- Inhibit Na/K/2Cl
Use:
- Diuresis in patients with sulfa alergies
Toxicity:
- Ototoxicity
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- Nephritis (interstitial)
- Gout
Ethacrynic acid (Toxicity)
Loop Diuretic: Phenoxyacetic acid derivative
Mechanism_:_
- Inhibit Na/K/2Cl
Use:
- Diuresis in patients with sulfa alergies
Toxicity:
- Ototoxicity
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- Nephritis (interstitial)
- Gout
Chlorthalidone (Mechanism)
Thiazide diuretic
Mechanism:
-
Inhibit NaCl reabsorption in DCT
- Also Decrease Ca++ excretion
Clinical Use:
- Hypertension
- HF
- Idiopathic hypercalciuria
- Nephrogenic DI
- Osteoporosis
Toxicity (hyper GLUC)
- Hypokalemic metabolic alkalosis
- Hyponatremia
- hyperglycemia
- Hyperlipidemia (increase LDL/Cholesterol)
- Hyperuricemia
- Hypercalcemia
- Sulfa alergy
Chlorthalidone (clinical use)
Thiazide diuretic
Mechanism:
- Inhibit NaCl reabsorption in DCT
- Also Decrease Ca++ excretion
Clinical Use:
- Hypertension
- HF
- Idiopathic hypercalciuria
- Nephrogenic DI
- Osteoporosis
Toxicity (hyper GLUC)
- Hypokalemic metabolic alkalosis
- Hyponatremia
- hyperglycemia
- Hyperlipidemia (increase LDL/Cholesterol)
- Hyperuricemia
- Hypercalcemia
- Sulfa alergy
Chlorthalidone (Toxicity)
Thiazide diuretic
Mechanism:
- Inhibit NaCl reabsorption in DCT
- Also Decrease Ca++ excretion
Clinical Use:
- Hypertension
- HF
- Idiopathic hypercalciuria
- Nephrogenic DI
- Osteoporosis
Toxicity (hyper GLUC)
- Hypokalemic metabolic alkalosis
- Hyponatremia
- hyperglycemia
- Hyperlipidemia (increase LDL/Cholesterol)
- Hyperuricemia
- Hypercalcemia
- Sulfa alergy
Hydrochlorothiazide (Mechanism)
Thiazide diuretic
Mechanism:
-
Inhibit NaCl reabsorption in DCT
- Also Decrease Ca++ excretion
Clinical Use:
- Hypertension
- HF
- Idiopathic hypercalciuria
- Nephrogenic DI
- Osteoporosis
Toxicity (hyper GLUC)
- Hypokalemic metabolic alkalosis
- Hyponatremia
- hyperglycemia
- Hyperlipidemia (increase LDL/Cholesterol)
- Hyperuricemia
- Hypercalcemia
- Sulfa alergy
Hydrochlorothiazide (clinical use)
Thiazide diuretic
Mechanism:
- Inhibit NaCl reabsorption in DCT
- Also Decrease Ca++ excretion
Clinical Use:
- Hypertension
- HF
- Idiopathic hypercalciuria
- Nephrogenic DI
- Osteoporosis
Toxicity (hyper GLUC)
- Hypokalemic metabolic alkalosis
- Hyponatremia
- hyperglycemia
- Hyperlipidemia (increase LDL/Cholesterol)
- Hyperuricemia
- Hypercalcemia
- Sulfa alergy
Hydrochlorothiazide (Toxicity)
Thiazide diuretic
Mechanism:
- Inhibit NaCl reabsorption in DCT
- Also Decrease Ca++ excretion
Clinical Use:
- Hypertension
- HF
- Idiopathic hypercalciuria
- Nephrogenic DI
- Osteoporosis
Toxicity (hyper GLUC)
- Hypokalemic metabolic alkalosis
- Hyponatremia
- hyperglycemia
- Hyperlipidemia (increase LDL/Cholesterol)
- Hyperuricemia
- Hypercalcemia
- Sulfa alergy
Spironolactone (Mechanism)
K+ sparing Diuretics
Mechanism:
- Competitive aldosterone antagonists in CT
Clinical use:
- Hyperaldosteronism
- K+ depletion
- HF
Toxicity:
- Hyperkalemia
- Endocrine effects (gynecomastia, antiandrogen effects)
Spironolactone (Clinical use)
K+ sparing Diuretics
Mechanism:
- Competitive aldosterone antagonists in CT
Clinical use:
- Hyperaldosteronism
- K+ depletion
- HF
Toxicity:
- Hyperkalemia
- Endocrine effects (gynecomastia, antiandrogen effects)
Spironolactone (Toxicity)
K+ sparing Diuretics
Mechanism:
- Competitive aldosterone antagonists in CT
Clinical use:
- Hyperaldosteronism
- K+ depletion
- HF
Toxicity:
- Hyperkalemia
- Endocrine effects (gynecomastia, antiandrogen effects)
Eplerenone (Mechanism)
K+ sparing Diuretics
Mechanism:
- Competitive aldosterone antagonists in CT
Clinical use:
- Hyperaldosteronism
- K+ depletion
- HF
Toxicity:
- Hyperkalemia
Eplerenone (Clinical use)
K+ sparing Diuretics
Mechanism:
- Competitive aldosterone antagonists in CT
Clinical use:
- Hyperaldosteronism
- K+ depletion
- HF
Toxicity:
- Hyperkalemia
Eplerenone (Toxicity)
K+ sparing Diuretics
Mechanism:
- Competitive aldosterone antagonists in CT
Clinical use:
- Hyperaldosteronism
- K+ depletion
- HF
Toxicity:
- Hyperkalemia
Triamterene (Mechanism)
K+ sparing Diuretics
Mechanism:
- Block Na+ channels in teh cortical CT
Clinical use:
- Hyperaldosteronism
- K+ depletion
- HF
Toxicity:
- Hyperkalemia (arrythmias)
Triamterene (Clinical use)
K+ sparing Diuretics
Mechanism:
- Block Na+ channels in teh cortical CT
Clinical use:
- Hyperaldosteronism
- K+ depletion
- HF
Toxicity:
- Hyperkalemia (arrythmias)
Triamterene (Toxicity)
K+ sparing Diuretics
Mechanism:
- Block Na+ channels in teh cortical CT
Clinical use:
- Hyperaldosteronism
- K+ depletion
- HF
Toxicity:
- Hyperkalemia (arrythmias)
Amiloride (Mechanism)
K+ sparing Diuretics
Mechanism:
- Block Na+ channels in teh cortical CT
Clinical use:
- Hyperaldosteronism
- K+ depletion
- HF
Toxicity:
- Hyperkalemia (arrythmias)
Amiloride (Clinical use)
K+ sparing Diuretics
Mechanism:
- Block Na+ channels in teh cortical CT
Clinical use:
- Hyperaldosteronism
- K+ depletion
- HF
Toxicity:
- Hyperkalemia (arrythmias)
Amiloride (Toxicity)
K+ sparing Diuretics
Mechanism:
- Block Na+ channels in teh cortical CT
Clinical use:
- Hyperaldosteronism
- K+ depletion
- HF
Toxicity:
- Hyperkalemia (arrythmias)
Urine NaCl Changes
Increased with all drugs (except acetazolamide)
Urine K+
Increase with Loop and thiazide diuretics (serum K+ may decrease as well)
Blood pH: Renal drugs –> adidemia
CA inhibitors, K+ sparing diuretics
Renal drugs –> Alkalemia
Loop diuretics and thiazides
- Volume contraction alkalosis
- K+ loss –> K+/H+ exchanger
- Exchange of H+ (instead of K+) in cortical collecting tube
Urine Ca++: renal drug affects
Increase with loops, (decrease paracellular transport)
Decrease with thiazides (enhanced reabsorption
Captopril, enalapril, lisinopril, ramipril
(mechanism)
ACE inhibitors:
Mechanism:
- Inhibit ACE –> decrease AT II –> decrease GFR by lowering constriction of efferent arterioles
- Prevents inactivation of bradykinin (a potent vasodilator)
Clinical use:
- Hypertension
- HF
- Proteinuria
- Diabetic nephropathy
- Prevent heart remodelling
Toxicity:
- Cough
- Angioedema
- Teratogen
- Creatinin (decreased GFR)
- Hyperkalemia
- Hypotension
- (avoid in bilateral renal artery stenosis)
Captopril, enalapril, lisinopril, ramipril
(cliniical use)
ACE inhibitors:
Mechanism:
- Inhibit ACE –> decrease AT II –> decrease GFR by lowering constriction of efferent arterioles
- Prevents inactivation of bradykinin (a potent vasodilator)
Clinical use:
- Hypertension
- HF
- Proteinuria
- Diabetic nephropathy
- Prevent heart remodelling
Toxicity:
- Cough
- Angioedema
- Teratogen
- Creatinin (decreased GFR)
- Hyperkalemia
- Hypotension
- (avoid in bilateral renal artery stenosis)
Captopril, enalapril, lisinopril, ramipril
(toxicity)
ACE inhibitors:
Mechanism:
- Inhibit ACE –> decrease AT II –> decrease GFR by lowering constriction of efferent arterioles
- Prevents inactivation of bradykinin (a potent vasodilator)
Clinical use:
- Hypertension
- HF
- Proteinuria
- Diabetic nephropathy
- Prevent heart remodelling
Toxicity:
- Cough
- Angioedema
- Teratogen
- Creatinin (decreased GFR)
- Hyperkalemia
- Hypotension
- (avoid in bilateral renal artery stenosis)
Losartan, candesartan, valsartan
(Mechanism)
Angiotensin II receptor
Mechanism:
- Selectively blcok Angiotensin II binding to AT1 receptor
Clinical use:
- Hypertension
- HF
- Proteinuria
- Diabetic nephropathy
- Patients with intolerance to ACE inhibitors
Toxicity:
- Hyperkalemia
- Decrease renal function
- Hypotension
- Teratogen
Losartan, candesartan, valsartan
(Clinical use)
Angiotensin II receptor
Mechanism:
- Selectively blcok Angiotensin II binding to AT1 receptor
Clinical use:
- Hypertension
- HF
- Proteinuria
- Diabetic nephropathy
- Patients with intolerance to ACE inhibitors
Toxicity:
- Hyperkalemia
- Decrease renal function
- Hypotension
- Teratogen
Losartan, candesartan, valsartan
(Toxicity)
Angiotensin II receptor
Mechanism:
- Selectively blcok Angiotensin II binding to AT1 receptor
Clinical use:
- Hypertension
- HF
- Proteinuria
- Diabetic nephropathy
- Patients with intolerance to ACE inhibitors
Toxicity:
- Hyperkalemia
- Decrease renal function
- Hypotension
- Teratogen
Aliskiren
(Mechanism)
Mechanism
- Direct Renin inhibitor
Clinical use:
- Hypertension
Toxicity:
- Hyperkalemia
- decreased renal function
- hypotension
- Contraindicated in diabetics taking ACE inhibitors or ARBS
Aliskiren
(Clinical use)
Mechanism
- Direct Renin inhibitor
Clinical use:
- Hypertension
Toxicity:
- Hyperkalemia
- decreased renal function
- hypotension
- Contraindicated in diabetics taking ACE inhibitors or ARBS
Aliskiren
(toxicity)
Mechanism
- Direct Renin inhibitor
Clinical use:
- Hypertension
Toxicity:
- Hyperkalemia
- decreased renal function
- hypotension
- Contraindicated in diabetics taking ACE inhibitors or ARBS
Bezold Jarisch reflex
ACEi –> hypotension
Exacerbated with other previously used diuretics