page370-379 Flashcards
Total lung volume (TLV) =
IRV + TV + ERV + RV.
https://drive.google.com/open?id=0B8uJUY-tie8GYVhRc1B1SHJfbDg
https://drive.google.com/open?id=0B8uJUY-tie8GR2VhemZ0RDE0RjA
https://drive.google.com/open?id=0B8uJUY-tie8GanZlLVN4NlB0Szg
https://drive.google.com/open?id=0B8uJUY-tie8GMEhmX3ZQSzFpOW8
Active process of inspiration
■ Requires muscular effort.
■ Mostly diaphragm at rest.
■ Intercostals used on exertion (accessory muscles).
Inspiratory effort causes:
■ ↓ intrapleural pressure.
■ ↓ alveolar pressure.
■ Pressure gradient from mouth to alveoli.
■ Gas flow down pressure gradient.
Expiration
■ Passive process (usually).
■ Due to lung recoil.
Relaxation of inspiratory muscles causes:
■ ↑ intrapleural pressure (intrapleural pressure becomes less negative).
■ ↑ alveolar pressure.
■ Pressure gradient from alveoli to mouth.
■ Gas flow down pressure gradient
FUNCTIONAL RESIDUAL CAPACITY
■ FRC = At rest.
■ Balance between inspiratory and expiratory forces.
■ Collapsing forces = Expanding forces.
■ Muscle contraction is needed to ↑ or ↓ lung volume from FRC.
https://drive.google.com/open?id=0B8uJUY-tie8GS1RPOG1sUmt0LWM
https://drive.google.com/open?id=0B8uJUY-tie8GV3RCcVlDekdXckE
ALVEOLAR PRESSURE
■ Atmospheric pressure in resting position.
■ 760 mm Hg (at FRC). Palv = 0 mm Hg
INTRAPLEURAL PRESSURE
■ Pressure within pleural cavity between outer surface lung and inner surface
chest cavity.
■ 756 mm Hg (at FRC) (< atomospheric pressure). Ppl = −34 mm Hg
ALVEOLAR VENTILATION
■ Amount of gas that reaches the functional respiratory units (ie, alveoli) per
minute.
■ Amount of atmospheric air that can undergo gas exchange.
■ Good gauge for breathing effectiveness
VA=RR °ø (TV − dead space air volume).
RESPIRATORY RATE
■ Breaths per minute.
TIDAL VOLUME
■ TV = amount of air brought into/out of lungs with a normal breath.
■ 500 mL.
■ 350 mL used for alveolar ventilation.
■ 150 mL dead space (fixed due to conducting airways).
tidal vol
DEAD SPACE
■ VD = Volume of air not participating in gas exchange
Anatomic dead space.
■ Typically 150 mL.
■ Volume of nonventilated gas in airways.
■ No gas exchange occurs within the nasal passages, pharynx, trachea,
bronchi.
Physiologic dead space.
■ Due to alveoli that are ventilated but not perfused.
■ Usually insignificant, unless there is disease.
TV °* RR = .
VT
https://drive.google.com/open?id=0B8uJUY-tie8GTnV4NlJJdHExLUk
https://drive.google.com/open?id=0B8uJUY-tie8GZm5NRzFIY0Z2RUk
Conducting zone airways contain mucous-secreting cells:
■ Goblet cells
■ Mucous cells
■ The epithelium is pseudostratified ciliated columnar.
Respiratory zone, alveolar wall has:
■ Type I epithelial cells
■ Type II epithelial cells ↓ pneumocytes
■ Produce surfactant
O2 uptake, CO2 elimination by the blood
■ O2 diffusion (alveolus → blood)
■ CO2 diffusion (alveolus ← blood)
Partial pressure gradient
■xxx difference between two sides of the membrane.
■ Diffusion occurs from high to low pressure (down the gradient).
■ PAyyy > Pzzz (alveolar > pulmonary arterial); O2 diffuses from
alveoli →aaaa
■ PaCO2 xxxx > PACO2 in xxxx; CO2 diffuses from blood →alveoli
Partial pressure gradient
■ Pressure difference between two sides of the membrane.
■ Diffusion occurs from high to low pressure (down the gradient).
■ PACO2 > PaO2 (alveolar > pulmonary arterial); O2 diffuses from
alveoli → blood.
■ PaCO2 blood > PACO2 in alveolus; CO2 diffuses from blood →alveoli
Gas solubility
■ Number of molecules dissolved in the liquid aa partial pressure of gas bb.
■ Solubility is an xxx property of the gas.
■ Solubility xx as partial pressure yy (Henry’s law). CO2 more zzz
than O2.
Gas solubility
■ Number of molecules dissolved in the liquid ↑ partial pressure of gas ↑.
■ Solubility is an intrinsic property of the gas.
■ Solubility ↑ as partial pressure ↑ (Henry’s law). CO2 more soluble
than O2.