les nombres réels propriétés de R Flashcards

1
Q

Relation d’ordre

A

Soit A un ensemble muni d’une relation d’ordre ≤. A est dit totalement ordonné si :
∀(x, y) ∈ A², on a x ≤ y ou y ≤ x.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

propriétés inéquations :
soient a,b et c trois réels

A
  1. a ≤ b ⇔ a + c ≤ b + c.
  2. Si a ≤ b et c ≥ 0, alors ac ≤ bc.
  3. Si a ≤ b et c ≤ 0, alors ac ≥ bc.
  4. Si 0 < a ≤ b ou a ≤ b < 0, alors 1/b ≥ 1/a.
  5. ∀(a, b) ∈ R², ab ≤ 1/2(a²+b²).
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

partie entière

A

Soit x ∈ R. Il existe un unique entier relatif, noté E(x), tel que :
E(x) ≤ x ≤ E(x) + 1.
E(x) s’appelle partie entière de x.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

propriétés valeur absolue

A

Soit(x, y) ∈ R
2
. On a
1. |x| ≥ 0 et | − x| = |x|.
2. |x| = 0 ⇔ x = 0.
3. |xy| = |x||y|.
4. Si x 6= 0,|1/x|=1/|x|.
5. Si a ∈ R+, |x| ≤ a ⇔ −a ≤ x ≤ a.
6. |x|² = x².
7. |x + y| ≤ |x| + |y| (Inégalité triangulaire).
8. ||x| − |y|| ≤ |x − y|.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

x appartient a [a; b]

A

{x ∈ R, a ≤ x ≤ b}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

[a; b[

A

{x ∈ R, a ≤ x < b}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

]a; b],

A

{x ∈ R, a < x ≤ b}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

]a; b[,

A

{x ∈ R, a < x < b}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

]a; +∞[,

A

{x ∈ R, x ≥ a}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

=]a; +∞[,

A

{x ∈ R, x > a}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

] − ∞; b],

A

{x ∈ R, x ≤ b}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

] − ∞; b[,

A

{x ∈ R, x < b}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

=] − ∞; +∞[.

A

R

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Voisinage d’un point de R

A

Une partie V de R est un voisinage d’un point x0 de R si, et seulement
si, il existe un intervalle ouvert de centre x0 inclus dans V .

How well did you know this?
1
Not at all
2
3
4
5
Perfectly