ensembles Flashcards

1
Q

ensemble vide

A

1 L’ensemble vide, noté ∅, est défini comme étant l’ensemble vérifiant x 6∈
E, pour tout objet x.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Appartenance

A

Soient E un ensemble et x un objet de E. 0n dit alors que x est un élément de E ou
x appartient à E et on écrit x ∈ E.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Inclusion E C F

A

∀x ∈ E,(x ∈ E ⇒ x ∈ F)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

On dit que E n’est pas inclus dans F, on note E 6⊂ F, s’il existe au moins un élément
de E qui n’appartient pas à F.

A

E 6⊂ F ⇔ ∃x ∈ E, x 6∈ F.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

E et F sont égaux

A

E = F ⇔ (E ⊂ F et F ⊂ E).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

ensemble des parties d’un ensemble

A

Soit E un ensemble. On appelle partie ou sous-ensemble de E tout ensemble F vérifiant F ⊂ E. L’ensemble des parties de E est noté P(E).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

intersection

A

A ∩ B = {x ∈ E, x ∈ A et x ∈ B}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

les 5 propriétés intersection

A

Soient A, B, C trois parties de E. Alors,
– A ∩ B ⊂ A et A ∩ B ⊂ B.
– A ⊂ B ⇔ A ∩ B = A.
– A ∩ ∅ = ∅,
A ∩ A = A,
A ∩ E = A.
– A ∩ B = B ∩ A.
– A ∩ (B ∩ C) = (A ∩ B) ∩ C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Union

A

A ∪ B = {x ∈ E, x ∈ A ou x ∈ B}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

5 propriétés union

A

Soient A, B, C trois parties de E. Alors,
– A ⊂ A ∪ B et B ⊂ A ∪ B.
– A ⊂ B ⇔ A ∪ B = B.
– A ∪ ∅ = A, A ∪ A = A.
– A ∪ B = B ∪ A.
– A ∪ (B ∪ C) = (A ∪ B) ∪ C.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

2 propriétés entre l’union et l’intersection

A

Soient A, B, C trois parties de E. Alors,
1. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
2. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

complémentaire

A

E C F = {x ∈ E, x 6∈ F}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

4 propriété complémentaire

A

Soit E un ensemble. Alors

  1. ∅ C E = E,
  2. E C E = ∅,
  3. F ∩ F C E = ∅,
  4. F ∪ F C E = E.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

loi de morgan

A

non(A∪B) = non(A) ∩ non(B)
non(A∩B) = non(A) ∪ non(B)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

différence

A

Soient F et G deux parties de E
F\G = {x ∈ E, x ∈ F et x 6∈ G} .

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Produit cartésien

A

Soient E et F deux ensembles. Le produit cartésien de E par F, noté
E × F, est l’ensemble des couples (x, y) où x ∈ E et y ∈ F.

17
Q
A