Lectures 10 & 11 Flashcards
For all x ≥ 1, we have ∣∑^∞(n=1) µ(n)/n∣ ≤ 1
When does the equality hold
When x = 2
Show ∑_(n≤x) µ(n)/n = 1
∑_(n<2) µ(n)/n = µ(1)/1= 1.
Give Legendre’s identity
[x]! = ∏_(p≤x) p^(α(p))
Where α(p) =∑^∞_(m=1) [x/(p^m)] .
What does the following imply
* log[x]! = x log x − x + O(log x)
If x >= 2
∑_(n≤x) Λ(n) [x/n] = x log x − x + O(log x).
What does the following equal
* ∑_(p≤x) [x/p] log p
For x ≥ 2
x log x + O(x)
If a, b ∈ R such that ab = x, find
* ∑(q,d)(qd≤x) f(d)g(q)
= ∑(n≤a) f(n)G(x/n) + ∑(n≤b) g(n)F (x/n) − F(a)G(b)
Give Chebyshev’s ψ-function
ψ(x) = ∑_(n≤x) Λ(n)
For x > 0
Give Chebyshev’s θ-function
θ(x) = ∑_(p≤x) log p
For x > 0
What are the bounds of
* ψ(x)/x − θ(x)/x
0 ≤ ψ(x)/x − θ(x)/x ≤ (log x)^2/(2 √x log 2)
Give Abels identity
For any arithmetical function a(n), let A(x) = ∑_(n≤x) a(n), where A(x) = 0 if x < 1. Assume f has a continuous derivative on the interval [y, x], where 0 < y < x. Then we have
- ∑_(y<n≤x) a(n)f(n) = A(x)f(x) − A(y)f(y) − ∫^x_y A(t)f′(t)dt.
∑_(y<n≤x) f(n)
Find this using Abel’s identity, then attain Euler’s summation formula
= [x]f(x) − [y]f(y) − ∫^x_y [t]f′(t)dt
Then by integration by parts
∫^x_y tf′(t)dt = xf(x) − yf(y) − ∫^x_yf(t)dt,