Lecture 17 Flashcards
1
Q
What is the abscissa of absolute convergence
A
Suppose that the series ∑∣f(n)/(n^s) ∣ does not converge for all s or diverge for all s. Then there exists a real number σ_a, called the abscissa of absolute convergence, such that the series ∑ f(n)/(n^s) converges absolutely if σ > σ_a but does not converge absolutely if σ < σ_a
2
Q
If ∑∣f(n)/(n^s)∣ converges everywhere how do we define σ_a
A
σ_a = −∞
3
Q
If ∑∣f(n)/(n^s)∣ converges nowhere how do we define σ_a
A
σ_a = +∞.
4
Q
If N ≥ 1 and σ ≥ c > σa what is the upper bound of
* ∣∑^∞(n=N) f(n)/(n^(−s))∣
A
N^(−(σ−c)) ∑^∞(n=N) ∣f(n)∣/n^c