Lecture 26 Flashcards
1
Q
Give A Contour Integral Representation for ψ1(x)/x^2
A
If c > 1 and x ≥ 1 we have
- ψ1(x)/x^2 = (1/2πi) ∫^(c+i∞)_(c−i∞) x^(s−1)/(s(s + 1)) (−ζ′(s)/ζ(s)) ds.
2
Q
If c > 1 and x ≥ 1, find
- ψ1(x)/x^2 − (1/2)(1 −1/x)^2
A
- (1/2πi) ∫^(c+i∞)_(c−i∞) x^(s−1) h(s)ds
where,
* h(s) = 1/(s(s + 1)) (−ζ′(s)/ζ(s) −1/(s − 1))
3
Q
Upper bounds for ∣ζ(s)∣ and ∣ζ
′(s)∣ near the line σ = 1
A
For every A > 0, there exists a constant M (depending on A) such that
- ∣ζ(s)∣ ≤ M log t and ∣ζ′(s)∣ ≤ M log^2(t)
for all s with σ ≥ 1/2 satisfying
- σ > 1 −A/log t and t ≥ e