Lecture 23 Flashcards
1
Q
Riemann Zeta function
A
For every s ∈ C with σ > 1, the Riemann-zeta function ζ(s) is defined as
- ζ(s) ∶= ∑_(n=1) 1/n^s
2
Q
Euler product representation of Riemann zeta function for σ > 1
A
ζ(s) = ∏_(p) (1 −1/p^s)^(−1)
3
Q
Suppose that σ > 0, x > 0 and s ≠ 1. Then for N an integer, give ζ(s)
A
- ζ(s) = ∑_(n≤N) 1/n^s + N^(1−s)/(s − 1) − s∫^∞_N {t}/t^(s+1) dt
4
Q
Where is the pole of the riemann zeta function in the half plane of σ > 0.
A
s = 1 with residue 1
5
Q
For σ > 0, give the integral representation of the gamma function
A
Γ(s) = ∫^∞_0 x^(s−1) e^(-x) dx.
6
Q
The Functional Equation for the Riemann-zeta function
A
For all s we have
- ζ(s) = 2(2π)^(s−1)Γ(1 − s) sin (πs/2) ζ(1 − s).
7
Q
Riemann Hypothesis
A
If 0 < R(s) < 1 and ζ(s) = 0, then R(s) =1/2