Lecture 14 Flashcards
1
Q
Apply Shapiros theorem to the Von Magnoldt function
A
∑(n≤x) Λ(n)/n = log x + O(1)
2
Q
∑(n≤x) ψ (x/n)
Find the answer using Shapiros theorem
A
x log x − x + O(log x)
3
Q
∑_(n≤x) θ (x/n)
Find the answer using Shapiros theorem
A
x log x + O(x)
4
Q
∑(p≤x) 1/p
Give an aymptotic for this divergent sum
A
log log x + A + O (1/log x)
for all x greater than or equal to 2
5
Q
lim_(x→∞)(M(x)/x − H(x)/x log x)
Give the value of the limit and the formula for H(x)
A
- Limit equals 0
- H(x) = ∑_(n≤x) µ(n) log n