Lecture 9 Flashcards
1
Q
Find ∑(n≤x) φ(n)
For x > 1
A
3/(π^2) x^2 + O(x log x).
2
Q
What’s the order of µ(n) and Λ(n)
A
- lim_(x→∞)1/x ∑_(n≤x) µ(n) = 0
- lim_(x→∞) 1/x ∑_(n≤x) Λ(n) = 1
3
Q
State the partial sum of the covolution h = f*g
A
let H(x) = ∑(n≤x) h(n), F(x) = ∑(n≤x) f(n) and G(x) = ∑_(n≤x) g(n).
Then H(x) = ∑(n≤x) f(n)G(x/n) = ∑(n≤x) g(n) F(x/n) .
4
Q
Give the partial sum of µ(n)
A
∑(n≤x) µ(n) [x/n] = ∑(n≤x)∑(d∣n) µ(d) = ∑(n≤x) [1/n] = 1
5
Q
Give the partial sum of Λ(n)
A
∑(n≤x) Λ(n) [x/n] = ∑(n≤x)∑(d∣n) Λ(d) = ∑(n≤x) log n = log[x]!.