Lecture 4 Flashcards
Define the Dirichlet product/Dirichlet convolution
Given two arithemetical functions f and g, we define their Dirichlet Product (or Dirichlet Convolution) to be the arithmetical function h defined by the equation
- h(n) = ∑_(d∣n) f(d)g (n/d) .
What is the function N
N(n) = n for all n.
What arithmetical properties hold for the Dirchlet convolution
Communicative and associative
Define the Dirichlet inverse
If f is an arithmetical function with f(1) ≠ 0, then there exists a unique arithemetical function f^(−1) such that:
- f ∗ f^(−1) = f^(−1) ∗ f = I.
Define the unit function
- u(n) = 1 for all n.
Give the Mobius inversion formula
- f(n) = ∑_(d∣n) g(d)
implies
- g(n) = ∑_(d∣n) f(d)µ(n/d) .
- And vice versa
What is the Von-Mangoldt Function
For any integer n ≥ 1, we define the VonMangoldt function Λ(n) by:
- Λ(n) = {log p if n = p^m for some prime p and some m ≥ 1, 0 otherwise}
What is the sum of the Von-Mangoldt function over divisors
- log n = ∑_(d∣n) Λ(d).
How can we equate the Von-Mangoldt function with the Mobius function
Λ(n) = ∑(d∣n) µ(d) log (n/d) = −∑(d∣n) µ(d) log d