JAAOS 2018 Flashcards
“JAAOS 2018 - Os Acromiale (JAAOS ‘18)”
“-common in blacks<div>-bilateral in 33%</div><div>-closure of physis at 25 years</div><div>-meso-acromion most common</div><div>-US can be 100% sensitive</div><div>-Treatment</div><div><img></img></div><div>-Tension banding decreases nonunion rate</div>”
Minimizing complications in Pilon Fractures
“<div>-early fixation = no increase in infx, but decrease LOS/cost<br></br></div><div>-primary fusion</div><div>-staged sequential posterior and anterior fixation</div><div>-acute shortening</div><div>-transsyndesmotic fibular plating</div><div>-upgrading (change a C-type to B-type: buttress oblique apex fracture while doing ex-fix)</div><div><br></br></div><div><div> <div> <div> <div>Summary</div> <ul> <li>Techniques for diminishing risk of soft-tissue and osseous sepsis:</li> </ul> <div>Early ““immediate”” fixation - decreases surgical time and LOS</div> <div>Staged ““delayed”” fixation</div> <div>Upgrading</div> <div>Primary arthrodesis</div> <div>Staged sequential posterior and anterior fixation</div> <div>Acute shortening</div> <div>Transsyndesmotic fibular plating</div> <ul> <li>Degree of articular reduction relates to arthrosis (but no clinical correlation</li> <li>Clinical outcome related to</li> <ul> <li>Social factors</li> <li>Medical comorbidites</li> </ul> <li>Open fractures: risk of vascular injury</li> <ul> <li>I and D, antibiotic beads, soft tissue coverage, staged bone graft</li> </ul> </ul> </div> </div></div></div>”
interbody fusions: open vs MIS
“<ul> <li>Kambin triangle: must do a facectectomy to get here.</li> <ul> <li>Borders: exiting nerve root, superior endplate of inferior vert body, traversing nerve root (articular process)</li> </ul> </ul> <div><img></img></div> <div></div> <ul> <li>MIS: less blood loss, less narcotic use, quicker ambulation, decreased LOS, less infection risk</li> <li>Open: less radiation exposure</li> <li>Equivalent: OR time, fusion rates, patient reported outcomes, complications</li></ul>”
Perc pedicle screw stabilization
<div> <div> <div> <ul> <ul> <li>Technique</li> <ul> <li>Good xray showing level endplate, SP bisecting pedicles</li> <li>Incision with lateral margin of pedicle</li> <li>Guidewire/Screw</li> <ul> <li>Startpoint: centered on lateral pedicle margin</li> <li>Trajectory: stay within laterral 2/3rds of pedicle</li> <li>Aim to be just past posterior vertebral wall</li> <li>Remove stylet, pass guide wire through trocar to anterior 1/3rd body</li> </ul> <li>Notes</li> <ul> <li>Cannulated screws have decreased pullout strength</li> <li>T-spine: TP can block trajectory so may need more medial startpoint, with more vertical trajectory</li> <li>Use of excessive rod contouring as sole method of indirect # reduction may result in screw stripping (especially w/ shallow purchase of cannulated screws) </li> </ul> <li>Reduction</li> <ul> <li>Pedicle screws at # level maximizes # reduction (Requires intact pedicles)</li> <li>3 phases of reduction: pt position, direct manip through endplate, indirect through ligamentotaxis viad distraction</li> </ul> <li>Screw types</li> <ul> <li>Monoaxial better for compression fractures to reduce anterior wedging and maintain anterior height</li> <li>Polyaxial easier for rroad passage and can achieve compression posterior for flexion distraction</li> </ul> <li>ROH at 3-4 months maintains motion</li> <li>Contraindications</li> <ul> <li>Severe comminution</li> <li>Nonintact pedicle/facet</li> <li>Inability to get startpoint/trajectory</li> </ul> <li>Outcomes: perc vs open</li> <ul> <li>Less EBL, maybe shorter OR time</li> <li>Deformity correction same</li> </ul> </ul> </ul> <div></div> <div></div> <div></div> </ul> </div> </div></div>
Cervical Laminoplasty
<div> <div> <div> <ul> <li>Summary</li> <li>Theory: Dorsal element-preserving, motion-preserving, posterior decompression via spinal canal expansion </li> <ul> <li>Originally for OPLL</li> </ul> <li>Consideration</li> <ul> <li>Cervical kyphosis is a contraindication</li> <ul> <li>Recommend lami + fusion for >15 deg kyphosis C2-C7</li> </ul> <li></li> </ul> <li>Techniques</li> <ul> <li>Unilateral open door</li> <ul> <li>Hinge on lamina-facet junction</li> </ul> <li>Bilateral double door laminoplasty</li> <ul> <li>Osteotomy at lamina-pedicle junction</li> </ul> </ul> <li>Outcuomes</li> <ul> <li>Pre-existing kyphosis >5 deg improve less</li> <li>Laminoplasty better without fusion</li> </ul> <li>Complications</li> <ul> <li>C5 palsy 6% (vs ACDF 2%)</li> <ul> <li>67% resolve by 4 months</li> <li>If severe - consider foraminotomies</li> </ul> <li>Axial neck pain</li> <ul> <li>Preserve semispinalais cervicis mm to decrease post-op neck pain</li> </ul> <li>C2-C3 stiffness from inadvertent interlaminar fusion</li> <li>Loss of lordosis</li> <ul> <li>Dissect between paraspinal mm and avoid going lateral to lateral masses</li> </ul> </ul> </ul> </div> </div></div>
Spinopelvic fixation
<div> <div> <div> <div>Summary</div> <ul> <li>SPF: powerful technique to resist flexion/cantilever forces that cause pseudarthrosis</li> <ul> <li>Fixation to pelvis provides stability anterior to pivot point which resists cantilever bending</li> </ul> <li>Adult sacrum: poor fixation: cancellous consistency, short/capacious S1 pedicles, sacral slope = shear forces vs. L5</li> <li>Options</li> <ul> <li>Iliac screws/bolts</li> <ul> <li>23/67 require ROH</li> </ul> <li>S2 Alar Iliac fixation</li> <ul> <li>Less ROH</li> <li>low profile, ability to align with rostral instrumentation, not require use of offset connectors</li> <li>long-term consequences of crossing SI joint with S2AI = unknown</li> </ul> </ul> <li>Outcomes: beneficial for:</li> <ul> <li>Patients: osteoporotic, with 3 column osteotomies, require fusion from TL junction to sacrum</li> </ul> <li>both iliac/S2AI screws fusion at LS junction</li> </ul> <div></div> </div> </div></div>
Discoid Meniscus: Classification, Investigation findings, tx
<ul> <li>Watanabe (arthroscopic classification)</li> <ul> <li>Type I - stable, complete discoid meniscus (covers the entire plateau)</li> <li>Type II - stable, partial discoid meniscus (covers up to 80% of the plateau)</li> <li>Type III - unstable, Wrisberg variant (Wrisberg is the only thing that attaches), lack of any other posterior meniscotibial attachments</li> </ul><li>Xray</li> <ul> <li>Squaring of lateral femoral condyle</li> <li>Widening of joint space</li> <li>Hypoplastic lateral tibial spine</li> </ul> <li>MRI</li> <ul> <li>Transverse meniscal diameter > 15mm</li> <li>Continuity between the anterior and posterior horns of the menisci noted on at least three consecutive 5mm thick sagittal slices</li> <li>Selective MRI no better than physical exam</li> </ul><li>Tx</li><li>meniscal rim preservation (6-8 mm) with arthroscopic saucerization</li> <li>After saucerization, assessment of meniscal stability is performed, because peripheral stabilization is necessary in patients with unstable discoid variants. Stabilization may be achieved through all-inside, inside-out, or outside-in suture repair. Stabilizing the hypermobile meniscus contributes to the ultimate goal of meniscal preservation</li> <li>In young patients a formal inside-out meniscal repair may be performed, using a posterolateral incision to protect the peroneal nerve, popliteal vessels, and tibial nerve during suture retrieval.</li></ul>
PMC injury of the knee
“<ul> <li>associated with anteromedial rotatory instability (AMRI)<br></br></li><li>components:POL, semimembranosus, OPL, capsule, PH of MM</li><li>injury: valgus and ER</li><li>P/E: AMRI (subluxation of AM plateau on femoral condyle), anterolateral drawer test, posteromedial drawer</li><li>Repair: Best for avulsion injuries (Stener lesions with MCL retracted prox to pes)<br></br></li><li>Reconstruction: of sMCL and POL</li></ul><div><div> <div> <div><img></img></div> </div></div></div>”
Shoulder Injections
“<ul> <li>Subacromial</li> <ul> <li>Pain relief with subacromial injection doing Neer’s test</li> <li>Ultrasonography – no difference in accuracy between injections into subacromial space with or without u/s </li> </ul> <li>AC</li> <ul> <li>Accuracy 39-67%</li> <li>U/S can help given oblique joint</li> <li>No difference b/t peri-arituclar vs articular injection</li> </ul> <li>GH</li> <ul> <li>Anterior more accurate than posterior</li> </ul> <li>Suprascap nerve</li> <ul> <li>Use U/S to get to suprascapular notch to avoid neurovasc injury</li> </ul> <li>Biceps injection</li> <ul> <li>False positive for inj into groove as fluid can travel into GH joint</li> <li>Inject into sheath not tendon itself</li> </ul></ul>”
Weight Bearing Shoulder: considerations
<ol> <li>Higher prevalence of shoulder pain and rotator cuff pathology in weightbearing shoulders</li> <li>Weight bearing shoulders are stronger than healthy counterparts</li> <li>Improving external rotation strength = strongest factor in reducing shoulder pain</li> <li>Common MRI findings:</li> <ol> <li>Cuff pathology</li> <li>CA ligament thickening / edema</li> <li>AC degeneration</li> </ol> <li>Patients cannot tolerate non-WB after surgery</li> <ol> <li>use double row techniques</li> <li>Leave long head of biceps if possible, otherwise tenotomize</li> </ol> <li>No data on reverse total shoulders in this population, options are total vs hemi</li> <li>Rehab is aggressive</li></ol>
Teres Minor Review
<ol> <li>Tm tears are rare</li> <li>Tm tears are NEVER seen in isolation</li> <li>Most active in higher levels of ER, but contribute minimally if IS/SS intact</li> <li>Most accurate clinical test is ER LAG</li> <ol> <li>Elbow 90, FE 20, max ER, pt must maintain</li> </ol> <li>Important functionally in massive RCT to maintain ER</li> <li>Hypertrophies when IS/SS deficient</li> <li>Integrity affects outcomes in RTSA and Lat dorsi transfer</li> <li>Site of compression QUAD space</li> <ol> <li>Lesions can be vascular or neurologic</li> </ol></ol>
Psych Factors in Shoulder Surgery
“<ol> <li>Post op pain associated with depression</li> <li>Psychological Distress affects outcomes in </li> <ol> <li>Shoulder</li> <ol> <li>TSA: Depression independent risk factor for delirium 2.3x, anemia 1.7x, infection 2.1x, alternative discharge 1.5x.</li> <li>Cuff: high subjective pain tolerance was bigger predictor of outcome in one study</li> </ol> <li>Spine</li> <li>Arthroplasty</li> <li>ACL</li> </ol> <li>Very high rates of depression and new depression in trauma 42-48%</li> <li>Surgical factors less associated with outcome than psyche</li> <li>There are many PROs that can detect depression and that are affected by psyche distress</li> <ol> <li>These are more sensitive than routine clinical evaluation</li> </ol> <li>Depression could affect compensation in USA, despite good surgery because PROs will be one factor</li></ol><div><div> <div> <div><img></img></div> </div></div></div>”
U/S as a tool…
<ul> <li>Longitudinal sinusoidal sounds waves that reflect off of soft tissue</li> <li>Piezoelectric effect</li> <ul> <li>Reflected echoes turned into electric signals</li> </ul> <li>As good as MRI for RCT, not as good for partial tears RCT/Biceps</li> <li>Good for long bone fractures</li> <li>Better in peds elbow fractures that XR</li> <ul> <li>In hands of ED doc</li> </ul> <li>Knee</li> <ul> <li>ACL</li> <ul> <li>88% sens, 98% spec</li> </ul> <li>LCL/MCL = good</li> <li>2x as good as MRI in acute mensical tear </li> <ul> <li>?just detecting it</li> </ul> </ul></ul>
Throwers Shoulder
“<div>Key Points</div> <ul> <li>Injuries during late cocking/acceleration</li> <li>Acceleration: Pect Major, Lat Dorsi, Triceps and Serratus anterior; subscap does very little</li> <li>Deceleration: RC at risk</li> <li>Changes/Adaptations</li> <ul> <li>Late cocking leads to anterior capsule stretch/laxity (AIGHL) –> laxity -> Bankart</li> <li>PIGHL contracts -> GIRD -> risk of injury</li> <li>Increased humeral retroversion</li> </ul> <li>Throwing injuries</li> <ul> <li>(1)Internal impingement </li> <ul> <li>at 90/90 - posterosup RC contacts posterosup labrum - ie pinching of PL cuff</li> <li>PIGHL contracture can lead to GIRD</li> </ul> <li>(2) Internal impingement and anterior instability</li> <ul> <li>Repetitive micro trauma may lead to loose anterior capsule and AIGHL</li> <ul> <li>May lead to symptomatic shoulder instability</li> </ul> <li>Increased anterior translation can lead to anterior labral tearing</li> </ul> <li>(3) Primary anterior or MDI</li> <ul> <li>Extreme fatigue/dead arm </li> <li>As cuff fatigues, subluxation episodes occur</li> <li>Often MRI grossly normal</li> </ul> </ul> <li>Tx: sleeper’s stretch</li> <ul> <li>RC repair</li> </ul><li><div> <div> <div><img></img></div> </div></div></li></ul>”
LCL Injury
<ol> <li>LCL Function</li> <ol> <li>primary resistor to varus</li> <li>Secondary stabilizer to ER in early flexion, some IR throughout ROM</li> <li>Resists anterior translation in concert with ACL</li> </ol> <li>Isolated injuries are very RARE, generally PLC injury</li> <ol> <li>Can be treated non-op</li> </ol> <li>Types 1, 2: non-op with early mobilization</li> <li>Type 3: reconstruction</li> <ol> <li>Anatomic reconstruction most reliable method, lower failure</li> <li>Better knee scores at 2 years</li> <li>Better outcomes in MLKI after recon cf repair</li> <li>Non-op leads to quicker RTS</li> </ol> <li>Recon techniques</li> <ol> <li>Anatomic</li> <li>Isometric: BF tenodesis</li> </ol></ol>
ALL of the knee
<div> <div> <div> <div>Summary</div> <ul> <li>ALL restrains Internal Tibial Rotation</li> <li>Anterolateral complex</li> <ul> <li>ITB: sup + deep + capsulo-osseous layer</li> <li>Anterolateral capsule: coronary ligaments (meniscofem/tib)</li> <li>ALL = refers to either mid-third capsular ligament, capsulosseus layer of the ITB or combination of both</li> </ul> <li>Inv</li> <ul> <li>US sucks</li> <li>MRI: not reproducible</li> </ul> <li>Tx (no outcome data)</li> <ul> <li>Lateral extra-articular tenodesis or ALL reconstruction = decreases internal tibial rotation but can result in overconstraint of internal rotation at knee flexion angles >30 degrees </li> <li>Addition of LET to ACL reconstruction – lowers risk of post-op pivot shift </li> <li>Indications: young, active patients with pathology rotator laxity and imaging suggest of anterolateral complex injury, and in the setting of revision for failed ACL reconstruction with no additional features of failure identified </li> </ul> </ul> <div></div> <div></div> </div> </div></div>
Elbow US
<div>Summary</div>
<ul> <li>Epicondylitis: anechoic/hypoechoic, increased vascularity on dop</li> <li>UCL: see ligament and medial joint space widening as well</li> <li>Biceps: partial tear can be seen</li> <li>Injection possible</li></ul>
Elbow P/E
“<div> <div> <div> <div>Summary</div> <ul> <li>Milking maneuver</li> <ul> <li>positive test: patient experiences a subjective feeling of apprehension and instability along with medial elbow pain</li> <li>SN 87.5%, NPV 100%</li> </ul> <li>Moving valgus stress</li> <ul> <li>Pain between 120-70 deg flexion</li> <li>SN 100%, SP 75%</li> </ul> <li>Valgus Extension Overload Test:</li> <ul> <li>-patient seated, shoulder slightly FF</li> <li>-slight flexion at elbow, examiner applies valgus stress while bringing elbow into flexion; attempting to cause impingement of the medial tip of the olecranon on the medial wall of the olecranon fossa</li> <li>-positive = posteromedial pain</li> <li>-varus may decrease pain</li> </ul> <li>Posterolateral rotatory instability</li> <ul> <li>Lateral pivot shift</li> <li>Chair push up</li> <li>Prone push up</li> <ul> <li>Prone and chair push up more sensitive than lateral pivot shift</li> </ul> <li>Table-top relocation</li> <li>Posterolateral rotatory drawer</li> </ul> </ul> <div>-elbow flexed to 40 degrees, a-p force on lateral aspect of proximal radius and ulna applied</div> <div>-looking for translation of forearm away from humerus on lateral side, pivoting about intact medial side</div> <div>-positive = apprehension, skin dimple</div> <ul> <li>Proximal median nerve entrapment (pronator syndrome)</li> <ul> <li>Loss of pinch, fine motor skills</li> <li>differentiate from carpal tunnel: PS = numbness/paresthesias in palmar cutaneous branch of median nerve and absence of positive provocative maneuvers at the wrist</li> </ul> <li>Radial tunnel/Supinator syndrome</li> <ul> <li>Weakness and decreased sensation in SRN</li> </ul> </ul> <div></div> <div><img></img></div> </div> </div></div>”
Glenoid Rim Reconstruction
<ul> <li>Glenoid and humeral bone lesions are increasingly recognized as key risk factors in recurrent anterior glenohumeral instability - they affect the concavity-compression mechanism</li> <li>Bone defects of 20-30% of glenoid fossa --> decrease GH stability</li> <li>Glenoid on-track: when the humeral head defect is confined within the margins of the glenoid contact area in abd/ER</li> <li>CT best for estimation of defect size</li> <li>Tx: if bone loss>10% and patient RFs: do bony reconstruction</li> <ul> <li>Laterjet: Increased stability from: increased A-P diameter, dynamic sling of conjoint tendon, capsular reinforcement with coracoacromial ligament remnant </li> <li>The congruent- arc Latarjert can improve articular surface restoration </li> <ul> <li>Do not oversize graft - it will just resorb</li> </ul> <li>Iliac crest grafts can be used in arthroscopic and subscapularis-sparing procedures(go through rotator interval)</li> <li>Implant-free techniques, such as the J-bone procedure, have shown accurate graft remodeling and good clinical outcomes </li> <li>Osteochondral allografts (lateral tibial plafond) aim to restore the cartilaginous surface without the morbidity that can result from graft harvesting, but concerns remain regarding availability, contamination, and viability </li> <ul> <li>Do not resorb</li> </ul> </ul></ul>
Periprosthetic tibia fractures
<div> <div> <div> <div>Summary</div> <ul> <li>XR: # pattern, stability, bone stock</li> <li>Aspirate: cell count <1100 not reliable in # setting</li> <li>Tx</li> <ul> <li>Non-op for stable and well aligned, Cast X 6 weeks</li> <li>Locking plates</li> <li>Nail (<9mm diameter)</li> <li>Revision if unstable</li> </ul> </ul> </div> </div></div>
Bearing Surfaces in THA
<div> <div> <div> <div>Key points:</div> <ul> <li>Harder bearings have lower wear rates due to lower surface roughness and less vulnerability to deforming forces</li> <li>Lubrication is useful as it disperses pressure</li> <ul> <li>Lubrication factor: Ceramic on ceramic > metal on metal > hard on soft</li> </ul> <li>Implant factors leading to wear</li> <ul> <li>Position: Vertical cup (edge loading)</li> <li>Material: large CoCr heads (>32) with poly have high wear rates</li> <li>Time: wear rates highest in first 1 million cycles</li> <ul> <li>Osteolysis from polyethylene debris is </li> <ul> <li>0.1mm/year for linear wear</li> <li>80mm3/year for volumetric wear</li> </ul> </ul> </ul> <li>Adverse local tissue reactions</li> <ul> <li>Common with metal on metal bearings but also due to fretting and corrosion at junction of trunion and head</li> <li>RFs for local tissue reaction</li> <ul> <li>Large femoral head</li> <li>Long trunnion length, small diameter</li> <li>Long neck length</li> <li>High taper angle</li> <li>Low rigidity</li> <li>Dissimilar alloys</li> <li>Note: trunnion corrosion is lowest with ceramic heads</li> </ul> </ul> <li>XLP</li> <ul> <li>Undergoes two processes to decrease free radical (+ vitE may help):</li> <ul> <li>High dose radiation in inert gas or vacuum</li> <li>Annealing or re-melting</li> <ul> <li>Melting --> removes all free radicals but affects crystalline structures</li> <li>Annealing --> heat to just below melting point</li> <ul> <li>Removes most free radicals, no effect to overall structure</li> </ul> </ul> </ul> <li>XLP has LOWER WEAR, SMALLER DEBRIS, but is more brittle</li> </ul> <li>All Zirconia ceramic bearings taken off market for late phase transformation </li> <ul> <li>tetragonal to monoclinical transformation</li> </ul> </ul> </div> </div></div>