Critical Thinking ch4 Flashcards

1
Q

‘Some A are B’ means ….

A

‘Some, perhaps all, A are B’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

P1) Fiona lives in Inverness, Scotland.
P2) Almost everyone in Inverness, Scotland, owns at least one woollen garment.
C) Probably, Fiona owns at least one woollen garment.

wat voor argument is dit

A

inductively forceful.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

wat is het verschil tussen deductively valid en inductively forceful

A

bij inductively forceful: the conclusion is likely to be true, unlikely to be false. This contrasts with a deductively valid argument, in which the premises
cannot be true and the conclusion false.

bij inductively forceful is de truts of the premises geen zekerheid voor de truth of the conclusion, maar de premises geven good reason to expect the conclusion to be true rather than false.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

wat zijn proportions in argumentation

A

Most P are Q, half of Ps are Qs etc.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

frequency in argumentation

A

bv: what is the probability that it will snow?

find out how frequently it has snown over the past few years.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

maar, frequency en proportions zijn vaak niet goed genoeg voor dit soort argumentatie. dus wij gebruiken…als general concept of probability

A

degree of rational expectation

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

hoe kan je de degree of rational expectation uitleggen

A

via conditional probabilities: hoe likely is het dat de proposition is true, given that some given set of propositions is true.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

hoe kan je inductively forceful arguments uitleggen dmv conditional probability

A

To say that such an argument is inductively forceful is to say that the
conditional probability of A relative to the set [P] is greater than one-half, but
less than 1. (The degree of inductive force of an argument is the conditional
probability of A relative to [P].)

dus inductively forceful: conditional probability of C relative to P is tussen 0.50-1.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

hoe leg je inductively forceful uit in woorden

A

The argument is not deductively valid, but, if the premises are true (or were true), then, given no information about the subject matter of the argument except that contained in the premises, it would be more reasonable to expect the conclusion to be true than it would to expect it to be false.

relative to the information contained in the premises [P], the conclusion is more likely to be true than false. It is unlikely to be false.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

wat is het verschil tussen probability en de truth

A

probability is a matter of degree!! truth is all or nothing!!!

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

We cannot say that one argument is more valid than another, but we
can say that one argument is more inductively forceful than another.

Thus an argument may be inductively forceful but only to a very small degree.

dus je kan degradaties hebben, een argument is meer inductively forceful dan een andere.

A

oke

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

wat is de conditional probability van een valid argument

A

1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

welke conditional probability moet een argument minimaal hebben om inductively forceful te zijn

A

0,5

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

dus welke probability heeft het woord ‘probably’

A

groter dan 0,50, vaak nog meer richting de 1, maar dat licht aan conversational implicature

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

wanneer is de degree van actual expectation groter dan degree of rational expectation

A

als je bijvoorbeeld een hart denkt te trekken uit een stapel kaarten. de kans dat je hem niet krijgt is 3/4, maar je denkt dat je hem wel krijgt doordat je dat gewoon denkt.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

is de degree of inductive force independent of dependent van de waarheid van de premises

A

nee, ook een inductively forceful argument kan inductively forceful zijn met foute premises!!! zolang de conclusie maar een > 0,50 kans heeft om waar te zijn

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

welke vraag moet je jezelf afvragen bij inductively forceful argumenten

A

If the information contained in the premises were all that you knew that’s
relevant to the truth-value of the conclusion, would you guess that the
conclusion is true? If yes, then the reconstructed argument is inductively
forceful; if not, then the argument is not inductively forceful.

dus… would you guess that the conclusion is true?

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

inductively sound argument =

A

it is inductively forceful and its premises are (actually) true.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

wat is het verschil in de conclusie van een inductively sound argument en een deductively sound argument

A

bij deductively sound moet hij goed zijn, bij inductively sound mag hij een false conclusion hebben (want de kans is groter dan 0,5, maar niet 1).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

inductive inference=

A

This is our name for the case when you
extrapolate from a sample of a total population of things either to something
outside the sample, or to a generalisation about the population as a whole

dus gewoon een observatie binnen een sample generaliseren naar de rest van de populatie

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

wat zijn 3 eisen voor inductive inference

A

To say that an inference is an inductive inference is to say:

(a) it is not deductively valid;
(b) its premises include a generalisation about a sample of a given population; and
(c) its conclusion extrapolates the generalisation to all or part of the total population from which the sample is drawn

21
Q

P1) 37 per cent of those polled support the Raving Loony Party.
C) Probably, 37 per cent of the adult population of Great Britain supports
the Raving Loony Party.

wat is dit voor argument

A

inductive inference

22
Q

The inductive force of an argument is the same as the conditional probability of the conclusion relative to the premises.

A

oke

23
Q

wat is belangrijk bij inductive inferences

A

dat de sample representatief is voor de populatie waar je naar wil generaliseren

24
Q

wat is mogelijk bij een inductive argument die forceful en sound is

A

dat je alsnog niet de conclusie accepteert, omdat de sample niet representatief is.

25
Q

hoe heet het als het wel inductively forceful is en sound, maar je de conclusie niet accepteert

A

the argument = defeated

26
Q

4 inductive inference stijlen

A

P: All of the observed sample of Fs are Gs.

  1. probably, all Fs are Gs
  2. probably, this unobserved F is G

P: X percent of the observed sample of Fs are Gs

  1. probably, X percent of Fs are Gs
  2. It is X percent likely that this unobserved F is G.
27
Q

hoe kan je dit inductive argument veranderen naar een deductive argument:

P1) All of the observed sample of jackdaws are monogamous.
C) All jackdaws are monogamous.

A

P1) All of the observed sample of jackdaws are monogamous.
P2) If all of the observed sample of jackdaws are monogamous, then all
jackdaws are monogamous.
C) All jackdaws are monogamous.

28
Q

P1) All of the observed sample of jackdaws are monogamous.
P2*) If all of the observed sample of jackdaws are monogamous, then probably
all jackdaws are monogamous.
C) Probably, all jackdaws are monogamous

wat is dit voor argument

A

deductive!!! want probably staat in beiden de P en C

29
Q

dus wat is de regel voor als het woord probably er in staat

A

probably in premis + conclusie = deductive

probably in alleen conclusie = inductive

30
Q

P1) If this is not the Queen of Spades, then I’ve won.
P2) The probability that this is not the Queen of Spades is 51/52.
C1) I’ve won.

wat is dit voor argument

A

inductively forceful

31
Q

P1) James is not likely to have lost his passport.
P2) James is not likely to have been delayed by a long queue at check-in.
C) Probably, James made it to his flight on time.

wat is dit voor argument

A

niet valid, en niet inductively forceful. want de probability of not likely is minder dan 0,50

32
Q

P1) Nine out of ten Green Party members are vegetarians or vegans.
P2) Only one in ten non-Green Party members are vegetarians or vegans.
P3) Alastair is a vegetarian.
C) Alastair is a Green Party member.

wat is dit voor argument

A

de base rate falleacy heeft hierin een rol gespeeld, dus niet valid en niet inductively forceful

33
Q

P1) Most residents of Alabama are native to Alabama.
P2) All natives of Alabama are natives of the American Deep South.
C) Most residents of Alabama are natives of the American Deep South.

P1) Most F are G.
P2) All G are H.
C) Most F are H.

wat is dit voor argument

A

deductively valid, want most staat in beiden de premises en de conclusie. je hoeft niks te inferencen

34
Q

P1) Most F are G.
P2) Most G are H.
C) Most F are H.

wat is dit voor argument

A

niet forceful en niet valid. want 3 keer most.

35
Q

P1) At least four in five Fs are G.
P2) At least four in five Gs are H.
C) Most F are H

wat is dit voor argument

A

deze is deductively valid. want 4/5 *4/5 = 16/25 = 0,64, wat genoeg is voor most.

36
Q

eerst logical assessment, dan kijk je naar …. en dan factual assessment, dan kijk je naar …

A
  1. deductive validity en inductive force
  2. truth values of the premises to determine the soundness
37
Q

wat zijn vragen over possible outcomes/mathematics/’probability zoals deze meestal:

P1) I’ve won if and only if this is not the Queen of Spades or the Ace of Spades.
P2) The probability that this is neither the Queen of Spades nor the Ace of
Spades is 50/52.
C1) The probability that I’ve won is 50/52

A

meestal deductively valid

38
Q

wat is de probability op niet-A

A

Pr(A_)

= A met dakje lol

39
Q

hoe bereken je P(A_)

A

P(A_)=1-P(A)

40
Q

hoe bereken je Pr(A and B) bij independent events

A

Pr(A) × Pr(B)

41
Q

hoe bereken je Pr(A of B)

A

Pr(A or B) = Pr(A) + Pr(B) – Pr(A and B)

42
Q

hoe bereken je de probability of A given B

A

Pr(A|B) = Pr(A and B)/Pr(B)

43
Q

kunnen twee tegensprekende conclusies nog steeds sound zijn

A

ja, als de premises beiden waar zouden kunnen zijn.

44
Q

hoe heet het als twee tegensprekende conclusies niet beiden waar kunnen zijn

A

dan zijn ze incompatible

45
Q

Many hamsters are black. Many hamsters are white.

kan dit samen?

A

JA!!!!

46
Q

Most hamsters are black. Many hamsters are white

kan dit samen?

A

JA!!!!

47
Q

als er niet probably of iets bij staat, mag je dit niet zomaar er bij denken. het is dan gewoon invalid.

A

oke

48
Q

many is niet hetzelfde als most!!! dus die kunnen gewoon samen in een zin, en many is niet genoeg voor probably

A

oke

49
Q

welke fallacy kan niet valid zijn en welke wel

A

formal fallacies -> kunnen nooit valid zijn
informal fallacies -> kunnen wel valid zijn

50
Q
A