Assignment 1 - EC7210 Flashcards

1
Q

Vad menas med en iso-elastisk nyttofunktion?

A

Ett exempel är u(Ct) = Ct^(1-theta)/1-theta.

En iso-elastisk nyttofunktion är en nyttofunktion med konstant elasticitet med w.r.t den beroende variabeln.

dlnu(Ct)/dlnCt = (1-theta) –> vilket är en konstant och oberoende av den beroende variabeln Ct.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

u(Ct) = Ct^(1-theta)/1-theta

Förutom att den överstående funktionen är ett exempel på en iso.elastisk funktion. Vad är det mer för typ av funktion och vad betyder det?

A

Det är en CRRA utility function, vilket står för Constant Relative Risk Aversion Utility Function.

Relative risk aversion mäter konsumentens attityd till risk och osäkerhet vilken är proportionell mot konsumtionsnivån.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Vad är en Ponzi scheme?

Hur löser man så att detta inte existerar i en modell med oändliga tidshorizonter?

A

Ponzi-game condition. A Ponzi game is a scheme in which someone issues debt and rolls it over forever. That is, the issuer always obtains the funds to pay off debt when it comes due by issuing new debt. Such a scheme allows the issuer to have a present value of lifetime consumption that exceeds the present value of his or her lifetime resources.

Man löser detta genom att ha ett ”no ponzi condition som t.ex A_{T+1} ≥ 0, dvs att tillgångarna måste vara noll eller positive i den absolut sista perioden.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Vad säger vår Consumption Euler Equation

u’(Ct) = β(1 + r)u’(Ct+1)?

A

It says that the household is indifferent between increasing consumption by one unit at time t or saving that unit and consume (1 + r) units at time t + 1.

I optimum är man alltså indifferent. Skulle vi istället ha haft

u’(Ct) > β(1 + r)u’(Ct+1)

The household would then prefer consuming one extra unit at period t instead of saving this unit and consume (1 + r) units at t + 1. This means that by consuming a little bit more and save a little bit less at time t, the household could increase it utility. But this contradicts that we found the optimum con-
sumption/saving path.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Om vi har Euler ekvationen
(Ct+1/Ct) = (1+r / 1+ρ)

Hur påverkas konsumtionsbeslutet om om räntan sjunker?

A

Consumption in t + 1 relative consumption in t increases in the interest rate. This means that a decrease in r leads to an increase in Ct relative to Ct+1 regardless of whether the consumer is an initial saver or borrower.
A lower interest rate increases the cost of consumption in t + 1 in terms of consumption in t which give rise to a substitution effect away from Ct+1. However, this does not tell us whether Ct or Ct+1 will decrease or increase as a result of a lower r since we do not account for the potential income effect here.

Han gör slutsky-ekvationen.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly