9. DATA EN ONLINE MARKTONDERZOEK Flashcards

1
Q

9.1 aangeven hoe verschillende kanalen (on- en offline) kunnen bijdragen aan het opbouwen van een profiel van een klant of prospect (B) 


A

Verschillende kanalen leveren verschillende informatie over de gebruikers van deze kanalen.
Online geeft meer informatie over klantprofiel. Cookies, email aanmelding, online klantgedrag, etiquete, media

Offline-klantcard

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

9.2 uitleggen wat first-party cookies en third-party cookies zijn (K) 


A

First-party cookie = de webmaster die de cookie laat plaatsen.
Klant data - bezoek historie van vorige keer, winkelwagentje, webstatistiek.

third party cookie = de party die de cookie daadwerkelijk verstuurd.
Door Adverterdeer op u computer geplaatst voor vertooning banner met advertenties - behavioural targeting

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

9.3 aangeven wat het verschil is tussen first-party data en third-party data (K) 


A

First party data = data eigendom van degene die het gebruikt.
third party data = Dit soort data worden verzameld door dataverzamelingsbedrijven en verkocht aan bedrijven voor gebruik.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

9.4 uitleggen wat een cookiewall is (K) 


A

Cookiewall = firewall die het plaatsen van cookies tegengaat.
pop-upvenster op een website dat de bezoeker van die website vraagt om verschillende cookies te accepteren voordat hij toegang krijgt tot deze website. Adv cookies kan afzeggen.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

9.5 uitleggen wat een DMP is en hoe deze bijdraagt aan datagedreven marketing (K) 


A

DMP = Data managment platform is een platform dat data uit verschillende bronnen kan onttrekken, deze samen kan brengen in één centrale omgeving, deze kan sorteren en vervolgens weer op kan opleveren naar andere bronnen die belangrijk zijn voor marketeers, uitgevers en andere bedrijven.

Dynamische website personalisatie obv gebruikersgedrag- en kenmerken
Automatische e-mails die op het juiste moment, met de juiste inhoudelijke boodschap (met dynamisch afgestemde content) aan de juiste persoon worden verzonden
Automatisch, op het juiste moment, met de juiste (dynamische) boodschap programmatic display advertising / remarketing campagnes draaien
Uw verkoopafdeling aansturen door op het juiste moment, de juiste klant / lead (na-)bellen door uw callcenter of verkoopteam

koppelen tooling

Demand Side Platformen t.b.v. online advertising / display en remarketing
Email marketing software (zoals MailChimp), voor het versturen van mails
CRM/klant systemen, voor aansturing van sales (en ook als databron)Website personalisatie tools (t.b.v. behavioral websites)
CRO-tools

Welke data kunt u gaan koppelen

    Websitebezoek data (webanalytics data)
    CRM data (uw klant/leads systeem)
    Ingekochte data
    Email marketing data
    Advertising resultaat data
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

9.6 uitleggen wat een persona is (K) 


A

Persona = is een zeer gedetailleerde omschrijving van een gebruiker van jouw product of dienst. Met behulp van persona’s creëert u ‘echte’ mensen in plaats van algemene doelgroepen die in de praktijk lastig te targeten zijn.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

9.7 uitlegge wat personalisatie en customization inhouden (B) 


A

Het op maat maken van de communicatie uiting zodat 1-op-1 marketing kan plaatsvinden.

Customization-verhogen van de klantwaarde door een aanbod/dienst, product en omgeving op maat - aanpast aan de individuele klant.

Personalisatie - 
van website / app - krijgen gebruikers informatie die voor hen opmaat gegenereert wordt / amazone 
Voorb: Rule based
content based
collaborative filtering

of producten en dienst - product text, beeld ontwerpen

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

9.8 uitleggen welke rol data spelen bij de personalisatie van de online-marketingkanalen (B) 


A

Personalisatie maakt onderdeel uit van marketing 4.0 waarbij een vergevorderde vorm van mens / individu gerichte marketing centraal staat.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

9.9 aangeven welke mogelijkheden consumenten hebben om hun privacy te beschermen (B)

A

AVG wetgeving, Wet bescherming persoonsgegevens, Cookiewetgeving, opt in.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

9.10 uitleggen wat big data is (B) 


A

Big Data = grote hoeveelheden data die dankzij de online systemen verzameld en geanalyseerd kunnen worden.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

9.11 uitleggen welke typen data-analyses door online marketeers worden gebruikt (B) 


A
The four types of data analysis are:
Descriptive Analysis
Diagnostic Analysis
Predictive Analysis
Prescriptive Analysis

Descriptive Analysis
The first type of data analysis is descriptive analysis. It is at the foundation of all data insight. It is the simplest and most common use of data in business today. Descriptive analysis answers the “what happened” by summarizing past data, usually in the form of dashboards.
The biggest use of descriptive analysis in business is to track Key Performance Indicators (KPIs). KPIs describe how a business is performing based on chosen benchmarks.
Business applications of descriptive analysis include:
• KPI dashboards
• Monthly revenue reports
• Sales leads overview
Diagnostic Analysis
After asking the main question of “what happened”, the next step is to dive deeper and ask why did it happen? This is where diagnostic analysis comes in.

Diagnostic analysis takes the insights found from descriptive analytics and drills down to find the causes of those outcomes. Organizations make use of this type of analytics as it creates more connections between data and identifies patterns of behavior.
A critical aspect of diagnostic analysis is creating detailed information. When new problems arise, it is possible you have already collected certain data pertaining to the issue. By already having the data at your disposal, it ends having to repeat work and makes all problems interconnected.
Business applications of diagnostic analysis include:
• A freight company investigating the cause of slow shipments in a certain region
• A SaaS company drilling down to determine which marketing activities increased trials

Predictive analysis attempts to answer the question “what is likely to happen”. This type of analytics utilizes previous data to make predictions about future outcomes.
This type of analysis is another step up from the descriptive and diagnostic analyses. Predictive analysis uses the data we have summarized to make logical predictions of the outcomes of events. This analysis relies on statistical modeling, which requires added technology and manpower to forecast. It is also important to understand that forecasting is only an estimate; the accuracy of predictions relies on quality and detailed data.
While descriptive and diagnostic analysis are common practices in business, predictive analysis is where many organizations begin show signs of difficulty. Some companies do not have the manpower to implement predictive analysis in every place they desire. Others are not yet willing to invest in analysis teams across every department or not prepared to educate current teams.
Business applications of predictive analysis include:
• Risk Assessment
• Sales Forecasting
• Using customer segmentation to determine which leads have the best chance of converting
• Predictive analytics in customer success teams
Prescriptive Analysis
The final type of data analysis is the most sought after, but few organizations are truly equipped to perform it. Prescriptive analysis is the frontier of data analysis, combining the insight from all previous analyses to determine the course of action to take in a current problem or decision.

Prescriptive analysis utilizes state of the art technology and data practices. It is a huge organizational commitment and companies must be sure that they are ready and willing to put forth the effort and resources.
Artificial Intelligence (AI) is a perfect example of prescriptive analytics. AI systems consume a large amount of data to continuously learn and use this information to make informed decisions. Well-designed AI systems are capable of communicating these decisions and even putting those decisions into action. Business processes can be performed and optimized daily without a human doing anything with artificial intelligence.
Currently, most of the big data-driven companies (Apple, Facebook, Netflix, etc.) are utilizing prescriptive analytics and AI to improve decision making. For other organizations, the jump to predictive and prescriptive analytics can be insurmountable. As technology continues to improve and more professionals are educated in data, we will see more companies entering the data-driven realm.
As we have shown, each of these types of data analysis are connected and rely on each other to a certain degree. They each serve a different purpose and provide varying insights. Moving from descriptive analysis towards predictive and prescriptive analysis requires much more technical ability, but also unlocks more insight for your organization.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly