3. Determinante. Rango Flashcards

1
Q

Definizione - Matrice estratta

A

Ogni matrice di tipo (p, q) ottenuta da A sopprimendo m-p righe e n-q colonne (oppure considerando solo certi elementi comuni).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Definizione - Minore estratto e complementare

A

-Minore estratto: determinante di una matrice estratta da A
-Minore complementare: se l’estrazione è avvenuta mediante soppressione

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Definizione - Complemento algebrico / cofattore

A

(-1)^i+j • Minore ij

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Corollario - Condizioni sufficienti determinante nullo

A
  1. Riga intera di zeri
  2. Una riga è combinazione lineare di un’altra
  3. Due righe uguali
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Definizione - Operazioni elementari

A
  1. Scambio di due righe
  2. Moltiplicazione di una riga per uno scalare non nullo
  3. Somma tra una riga e un’altra riga moltiplicata per uno scalare
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Definizione - Matrice in forma canonica speciale

A
  1. A scala e ogni pivot è uguale a 1
  2. Tutti gli elementi sopra e sotto i pivot sono uguali a 0
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Teorema di Binet

A

det(AB) = det(A) • det(B)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Teorema - Caratterizzazione delle matrici invertibili

A

det(A) è diverso da 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Teorema - Primo teorema di Laplace

A

Il determinante è uguale alla somma dei prodotti degli elementi di una riga o colonna per i rispettivi complementi algebrici.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Teorema - Secondo teorema di Laplace

A

La somma dei prodotti degli elementi di una riga o colonna per i complementi algebrici dei rispettivi elementi di UN’ALTRA RIGA O COLONNA è nulla.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Teorema - Determinante matrici triangolari e diagonali

A

det(A) = prodotto degli elementi della diagonale principale

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Definizione - Matrice aggiunta

A

La trasposta della matrice formata dai complementi algebrici degli elementi

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Teorema - Matrice inversa

A

Matrice aggiunta di A / determinante di A

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Definizione - Rango di una matrice

A

Dimensione del sottospazio generato dalle colonne di A.

Dunque, il massimo numero di colonne linearmente indipendenti viste come vettori del campo K.

Il massimo ordine dei minori non nulli estraibili da A.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Definizione - Orlato di un minore Mr

A

Ogni minore di ordine r+1 contenente Mr

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Teorema - Teorema di Krönecker

A

Condizione necessaria e sufficiente affinché una matrice non nulla abbia rango r è che esista un minore non nullo di ordine r avente tutti gli orlati nulli.

17
Q

Teorema - Rango di una matrice a scala

A

Coincide con il numero di righe non nulle della matrice.