2e exam. 1 Flashcards

1
Q

Quels sont les rôles de la psychologie ?

A
  • Définir certaines caractéristiques du comportement
  • Décrire/prédire les différences de comportement
  • Prédire les changements de comportement
  • Expliquer le pourquoi de ces différences.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

De quoi dépend directement la qualité des descriptions, explications et prédictions du comportement ?

A

La qualité de ces éléments dépend directement de la qualité des mesures.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Quelle est la définition générale de “mesure” ? De qui est-elle tirée ?

A

De façon générale, on définit la mesure comme étant un “ensemble de méthodes utilisées pour donner une description (quantitative) d’une caractéristique spécifique d’un phénomène”. Urbina 2014.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Quelle est la définition précise de “mesure” ? De qui est-elle tirée ?

A

“Spécifiquement, la mesure est une opération qui consiste à associer, selon certaines règles, des symboles (souvent numériques) à des objets, à des événements ou à des individus de façon à évaluer le degré auquel ils présentent certains attributs.” Anaztasie 1994

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

La mesure est une opération qui consiste à associer […] des symboles à des objets/événements/individus. Que suggère l’association ?

A

L’association suggère une corrélation

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Pour être ________, les symboles doivent être accompagnés d’ _______________.

A

représentatifs, une unité de mesure

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Que peut-on dire sur l’expression “2m” ?

A

Dans le cas d’une personne de 2m, on associe le nombre “2” au mot “mètre”, qui est l’unité de mesure utilisée et qui a été appliquée deux fois sur la longueur de la personne.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

La mesure est partout. Dans quels domaines se retrouve-t-elle ?

A

Physique: énergie, masse, force, longueur, poids…
Biologie: rythme cardiaque, pouls, taux de métabolisme, …
Économie: PNB, taux de chômage…
Loisir: performance sportive, cote d’un film, …
Éducation: notes en mathématiques, français…
Psychologie:intelligence, motivation, anxiété, intérêts…

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Pourquoi dit-on que la mesure des attributs psychologiques est plus complexe que la mesure des attributs physiques ?

A

Plus de variables à définir et à contrôler pour obtenir un résultat réaliste (valide et fidèle)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

À quoi sert l’utilisation des symboles numériques ?

A

L’utilisation de symboles numériques sert donc à quantifier les attributs. Cette quantification facilite la communication des résultats relatifs au degré de présence d’un attribut chez un individu.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Les procédés d’obtention d’une mesure doivent être ______.

A

explicites

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Comment on fait pour s’assurer que les procédés d’obtention de la mesure sont explicites ?

A

Il y a des règles précises qui régissent le processus de mesure.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Que permet la formulation rigoureuse des règles ?

A

Elle permet d’associer les symboles numériques à des attributs et contribue à ce que les résultats obtenus (à l’aide d’instruments de mesure) soient reproductibles.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Que permet la mesure ?

A

La mesure, en plus de permettre une quantification, donne une description plus objective et s’avère plus économique en temps et en argent qu’une évaluation subjective conçue pour fournir des informations comparables.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Quelle mesure est la meilleure, objective ou subjective ?

A

Pas une meilleure que l’autre, elles sont plutôt complémentaire. La mesure objective est plus économique en temps et argent si on mesure la même chose –> elle n’est pas nécessairement meilleure, mais plus économique.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Quel genre d’information obtient-on avec une évaluation subjective ?

A

L’évaluation subjective est conçue pour fournir des informations comparables.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Qu’est elle la définition de l’évaluation ?

A

C’est une opération qui consiste à porter un jugement de valeur ou à accorder une valeur à un objet ou à une personne en la comparant avec un critère donné.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Donnez un exemple de mesure et d’évaluation.

A

L’expression 2,14m est le résultat d’une mesure (une règle précise a été appliquée). Une personne de cette grandeur est souvent évaluée comme “très grande”.
Donc mesure = 2,14m
Évaluation = très grande

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Quel est le problème qu’il faut résoudre lorsqu’il s’agit d’évaluer l’intelligence/aptitudes/intérêts/personnalité ?

A

il est fréquent que l’on ignore l’unité de mesure et les limites du phénomène en question

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Quelles informations faut-il connaître pour porter un jugement de valeur ?

A

l’unité de mesure et les limites du phénomène en question

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Quelle erreur plusieurs personnes font avec les données qualitatives ?

A

on ne peut pas faire de moyenne, donc régression impossible. On ne peut pas traiter l’information comme des données continues, mais plusieurs le font quand même.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

Qui a proposé le postulat des échelles fondamentales de mesure ?

A

Stanley Smith Stevens (1946)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

Qu’a fait Stanley Smith Stevens ?

A

Il a proposé le postulat selon lequel les quatre principaux niveaux de mesure correspondent à 4 types fondamentaux d’échelles de mesure: nominale, ordinale, intervalle égal et de proportion.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

Quels sont les synonymes pour échelle nominale ?

A

de classe ou catégorielle

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

Quelle est la forme la plus simple de classification (niveau primaire) ?

A

l’échelle nominale

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

Quelle caractéristique de l’échelle nominale est importante ?

A
  • il n’y a pas d’ordre inhérent à la mesure !

- chaque observation se trouve dans une catégorie et une seule.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

Quelle est l’utilité de l’échelle nominale ?

A

Elle permet de regrouper des individus en fonction de caractéristiques communes. Ça permet de classer les sujets dans des catégories qui sont exclusives.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

Comment peut-on juger de l’inclusion d’un individu dans une classe ou une catégorie ?

A

En précisant les critères utilisés.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

Dans l’échelle nominale, de quoi dépend la rigueur de la discrimination ?

A

de la capacité d’observation de l’évaluateur

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q

pourquoi l’échelle nominale est limitée aux sciences humaines ?

A

car elle ne fournit pas d’indication sur l’amplitude des attributs

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q

À quelle échelle correspond le sexe ?

A

Nominale

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

À quelle échelle correspond le genre ?

A

qualitative ordinale (ex: échelle de masculinité)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q

Dans quelle condition utilisons-nous l’échelle nominale ?

A

On l’utilise quand on peut seulement dire qu’un individu appartient à une catégorie et un autre individu à une autre catégorie, mais quand on ne peut pas dire que l’un est plus que l’autre (du point de vue de la variable mesurée)

  • Donc ce sont des échelles non ordonnées (non ordonnables).
  • Aucune opération arithmétique n’est permise
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
34
Q

Quelles statistiques pouvons-nous utiliser pour une échelle nominale ?

A

Fréquence et pourcentages

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
35
Q

Exemples pour échelle nominale ?

A

sexe, couleur des yeux, lieu de naissance,…

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
36
Q

Quelles sont les caractéristiques pour échelle ordinale ?

A
  • l’ordre relatif des individus est important: il doit y aoir un ordre inhérent
  • les symboles numériques attribués aux individus sont des rangs
  • pas de garantie que la différence entre 1 et 2 soit la même qu’entre 4 et 5
  • ne permet pas de savoir s’il y a absence totale de l’attribut, alors elle n’admet pas le 0 absolu.
  • on ne peut pas encore dire combien de fois plus que …
  • la relation entre les observations est transitive (Si A>B et B>C, alors A>C
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
37
Q

Vrai ou faux: Dans l’échelle ordinale, le 0 signifie l’absence du phénomène

A

Faux: on ne sait pas s’il y a absence totale de l’attribut, alors elle n’admet pas le zéro absolu.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
38
Q

Que veut-on dire par “relation transitive” ?

A

Si A>B et B>C, alors A>C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
39
Q

Peut-on calculer une moyenne avec une échelle ordinale ?

A

Plus ou moins: par convention, on pouvait calculer une moyenne d’une échelle ordinale (Likert, seulement), mais au fur et à mesure que les années passent, cette convention devient plus faible, cible de plusieurs critiques.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
40
Q

Exemples pour échelle ordinale ?

A

Échelle de satisfaction (type Likert), poste de l’armée, postes dans une entreprise…

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
41
Q

Qu’est-ce qu’un échelle à intervalles égaux ?

A

Si plusieurs objets ou individus sont ÉGALEMENT DISTANTS (égalité des intervalles) selon le degré auquel ils présentent l’attribut, la distance qui les sépare peut être considérée comme une UNITÉ LINÉAIRE DE MESURE, et l’échelle ainsi constituée est appelée échelle à intervalles égaux ou, simplement, échelle d’intervalles.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
42
Q

Comment est établi le QI ?

A

par les réponses (et le temps de réponse) qu’une personne fait à un ou plusieurs tests d’intelligence qui sont des questionnaires, des exercices (ex: assembler un casse-tête), etc.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
43
Q

Vrai ou faux: nous sommes incapables de mesurer l’intelligence en tant que tel.

A

Vrai

44
Q

Que mesurons-nous avec un test d’intelligence ?

A

Ce sont les manifestations de l’intelligence: capacité à faire des associations, à se situer dans des espaces en trois dimensions, etc.

45
Q

Quelles sont les limites des tests d’intelligence ?

A

Non seulement on ne peut observer “l’absence d’intelligence” car on ne sait même pas encore exactement ce qu’est l’intelligence, mais en plus, lorsque vient le temps de mesurer les manifestations de l’intelligence, les psychologues ne sont même pas d’accord, utilisant parfois des tests différents.

46
Q

Quels sont les synonymes d’échelle à intervalles ?

A

échelle mathématique, métrique ou numérique

47
Q

Quelle est l’utilité d’une échelle à intervalles égaux ?

A

Les échelles d’intervalles permettent la mesure des différences entre les degrés de présence des attributs, mais elles n’indiquent pas l’amplitude absolue de ces degrés, car elles n’admettent pas le zéro absolu - le point zéro est défini de façon arbitraire.

48
Q

Vrai ou faux: l’échelle numérique peut aussi être transformée en une échelle ordinale, et vice versa.

A

Faux: elle peut être transformée en une échelle ordinale (mais pas l’idéal), mais pas l’inverse.

49
Q

Exemples pour échelle à intervalles égaux

A

température, localisation (latitude et longitude), l’heure de la journée…

50
Q

Quel est le synonyme pour l’échelle des proportions ?

A

échelle de ratio

51
Q

Quelle est la première caractéristique de l’échelle des proportions ?

A

Sa première caractéristique réside dans la possibilité de connaître la distance entre le zéro absolu et la position 1 d’un objet ou d’un individu sur un continuum défini selon un attribut donné (les nombres représentent donc de façon réelle le degré de présence d’un attribut chez un individu).

• On peut aussi établir que l’individu 2 présente le double du degré de l’attribut présenté par l’individu 1, par exemple.

52
Q

Exemples d’échelles de proportion ?

A

âge, nombre d’enfants, …

53
Q

Quelle est la similarité entre l’échelle des proportions et les échelles moins complexes ?

A

De plus, comme pour les échelles moins complexes, la direction du continuum est connue, de même que le rang des individus en fonction de l’attribut et de l’étendue des intervalles entre les scores, intervalles qui sont évidement égaux.

54
Q

Quelles sont les conventions relatives à la classification des échelles de mesure ?

A
  • L’opinion la plus répandue est qu’il n’y a pas d’unités correctes ou véritables pour une échelle de mesure. La classification d’une échelle serait plutôt une affaire de convention et d’utilité. La controverse existante entre les écoles des mesures plus flexible et plus rigoureuse (des statistiques puissantes) ne semble pas en voie de se régler.
  • Par convention, les techniques puissantes d’analyses statistiques sont compatibles avec les données relatives aux attributs humains (incluant les attributs psychologiques).
55
Q

La classification d’une échelle de mesure serait une affaire de ________ et de ________.

A

convention, utilité

56
Q

Quelle est l’opinion la plus répandue selon les unités d’une échelle de mesure ?

A

L’opinion la plus répandue est qu’il n’y a pas d’unités correctes ou véritables pour une échelle de mesure. La classification d’une échelle serait plutôt affaire de convention et d’utilité.

57
Q

qui choisi l’utilité de l’échelle ?

A

l’auteur

58
Q

V ou F: par convention, certaines analyses sont encore permises, même si elles ne sont pas valides pour le type de données.

A

Vrai. (et on vient juste de ne plus permettre l’analyse sur les moyennes)

59
Q

échelle à intervalles: quel est l’exigence du calcul de Pearson ?

A

augmentation linéaire

60
Q

En psychométrie, on doit recourir à 2 échantillons. Quels sont-ils ?

A

Échantillon d’individus et échantillon de contenu (items du test)

61
Q

Quel est le problème avec les 2 échantillons en psychométrie (problème d’échantillonnage) ? qui a dit ça ? Comment peut-on régler le problème ?

A

Selon Bernier et Pietrulewicz (1997), il est virtuellement impossible de tenir compte simultanément, dans les analyses statistiques, des ces deux dimensions du problème de l’échantillonnage. (pas de formule math qui peut traiter les 2 échantillons)
Une façon typique de régler ce problème est de tenir compte explicitement de l’une des deux dimensions (tout en gardant à l’esprit que l’autre dimension peut éventuellement influer sur les résultats).
(traiter explicitement 1 échantillon tout en tenant compte que 1 autre échantillon peut venir influencer le premier)

62
Q

Sur lequel des échantillons en psychométrie doit-on focuser notre attention ?

A

nb d’items. pas de personnes en psychométrie

63
Q

Que faisons-nous pour remédier au problème d’échantillonnage ?

A

L’approche préconisé en psychométrie (lors de l’élaboration d’un instrument de mesure): on utilise un échantillon d’individus suffisamment grand pour que l’erreur d’échantillonnage se rapportant aux individus soit peu importante. Le problème de la représentativité de l’échantillon des sujets étant ainsi réglé, la représentativité de l’échantillon du contenu du test devient alors la préoccupation centrale

64
Q

Qu’est-ce que ça fait quand l’échantillon de personnes est suffisamment grand ?

A

Pour autant que l’échantillon des sujets soit suffisamment grand, la précision d’un test sera indépendante du nombre de sujets de l’échantillon et sera directement reliée au contenu du test, c’est-à-dire au nombre d’items.

65
Q

Qu’est-ce que la loi des grands nombres ?

A

plus mon échantillon est grand, plus les résultats de mon échantillon vont se rapprocher des résultats (de la réalité) de la population.

66
Q

Sur quoi on se base pour interpréter les scores des tests psychologiques ?

A

Les scores des tests psychologiques sont généralement interprétés en se référant à des normes qui représentent la performance au test d’un échantillon de normalisation:
• On établit donc les normes de façon empirique en observant dans quelle mesure les membres d’un groupe représentatif répondent effectivement le test en question.

67
Q

Quand est-ce que l’échantillon sur lequel on focus est les personnes ?

A

quand on veut établir des normes

68
Q

qu’est-ce qui permet de valider si la moyenne est une bonne mesure ?

A

si la valeur est plus petite que la moitié de la valeur de la moyenne

69
Q

Comment compare-t-on le score d’un individu avec le groupe normatif ? Quelles questions doit-on se poser ?

A

Il suffit de situer le score brut de tout individu à l’intérieur de la distribution des scores des membres de l’échantillon de normalisation, de façon à préciser sa position relative au sein de ce groupe:
• Le score coïncide-t-il avec la performance moyenne du groupe normatif?;
• Est-il légèrement inférieur à cette moyenne?
• Se situe-t-il près de l’extrémité supérieure de la distribution?

70
Q

Vrai ou faux: situer un individu par rapport au groupe normatif par le biais du nb d’écart-type qui le sépare de la moyenne est la façon la plus précise.

A

Faux. Dans le but d’établir de façon plus précise la position exacte d’une personne à l’intérieur de l’échantillon normatif, le score brut doit être transformé en une mesure relative.

71
Q

Quelles sont les fonctions des mesures relatives ?

A
Ces scores (mesures relatives) dérivés remplissent deux fonctions:
     • Ils déterminent la position relative de l’individu à l’intérieur de l’échantillon normatif et permettent de comparer sa performance à celle d’autres personnes;
     • Ils permettent de comparer directement la performance d’une même personne à différents tests.
72
Q

Qui a comparé âge mental vs âge âge chronologique ?

A

Binet (en 1905)

73
Q

Quelle est la première étape à l’analyse ?

A

distribution des fréquences (Une liste de 1000 scores à un test peut décourager quiconque doit les analyser. Une première étape de mise en ordre d’un tel chaos de données brutes consiste à regrouper ces scores sous forme d’une distribution de fréquences)

74
Q

Quelle est l’un des principaux objectifs de la méthode statistique ?

A

organiser et à systématiser des données quantitatives de façon à en faciliter l’interprétation

75
Q

Quelle est la 2e étape de l’analyse statistique ?

A

faire la courbe de distribution.
• L’information fournie par une distribution de fréquences peut être représentée graphiquement sous la forme d’une courbe. Ce type de courbe possède des propriétés importantes et sert de base à plusieurs sortes d’analyses. Elle indique que la majorité des sujets se regroupent autour de la partie centrale de l’étendue et que leur nombre diminue progressivement de chaque coté.

76
Q

Que faut-il vérifier dans la courbe de normalité ?

A

sa symétrie: une courbe est symétrique si les deux côtés sont semblables (évaluation). on peut aussi faire une mesure: valeur symétrie / ET symétrie. on ne doit pas dépasser plus ou moins 1,96
son aplatissement: valeurs d’aplatissement / ET aplatissement. ce résultat doit se trouver entre plus ou moins 1,96.
sinon, pas distribution normale -> moyenne pas bon indice

77
Q

Quelle indice nous donne la symétrie de la courbe ?

A

si la moyenne est un bon indice

78
Q

Quels sont les 3 types d’allures de courbes ?

A

mésocurtique, leptocurtique et platicurtique

79
Q

mise à part la courbe de distribution, avec quoi peut-on décrire un groupe de score ?

A

à l’aide des mesures de tendance centrale (moyenne, mode, médiane, etc.); de variabilité (étendue, écart-type, etc.); de distribution (normal = symétrique + d’aplatissement modéré).

80
Q

Dans quel contexte l’interprétation de l’ÉT est particulièrement clair ?

A

lorsqu’elle s’applique à une distribution normale (ou quasi normale)

81
Q

Dans une distribution normale, il existe une relation directe entre _____ et _____.

A

l’écart-type et le pourcentage de sujets

82
Q

Dans quels contextes les relations entre l’ÉT et le pourcentage de sujets est particulièrement pertinente ?

A

lors de l’interprétation des scores et de centiles.

83
Q

On peut donner une signification aux résultats d’un test en décrivant quoi ? donner un exemple

A

On peut donner une signification aux résultats dun test en décrivant létape atteinte par une personne à lintérieur dun cheminement développemental normal :
• Si un enfant de 8 ans obtient, à un test dintelligence, une performance égale à celle dun enfant de 10 ans, on peut dire qu`il a un âge mental (AM) de 10 ans.

84
Q

Quel est le problème avec les scores basés sur les normes développementales (ex: âge mental)? Dans quels cas sont-ils fort attrayants ?

A

Quel que soit leur mode de présentation, les scores basés sur des normes développementales (l’âge mental) sont plutôt rudimentaires sur le plan psychométrique et se prêtent mal à un traitement statistique plus rigoureux.

Par contre, cela ne les empêche pas dêtre fort attrayants en tant quoutils descriptifs, spécialement dans le cas d`études détaillées de cas particuliers ou dans la poursuite de divers objectifs de recherche.

85
Q

Quel était le problème de dispersion (inter-âge) des performances individuelles pour l’âge mental ? Quelle était la solution ?

A

Les sujets échouaient certains items sous leur âge mental et réussissaient d’autres au dessus.
solution = âge basal + crédits supplémentaires

86
Q

Qu’est-ce que l’âge basal ?

A

le niveau d’âge le plus avancé où tous les problèmes sont réussis.

87
Q

Vrai ou faux: on essaie de prioriser les normes développementales.

A

faux: elles sont trop rudimentaires. on essaie d’éviter ça

88
Q

Quel calculons-nous avec l’âge basal ?

A

les crédits supplémentaires: on accorde des crédits additionnels, en mois, pour chaque épreuve réussi au-delà de cet âge basal.

89
Q

Quel est l’opération pour calculer l’âge mental ?

A

L`âge mental correspondait à la somme de ces deux composantes : âge mental = âge basal (en année) + crédits additionnels (en mois).

90
Q

Combien d’erreurs faut-il faire pour arrêter un test de QI ?

A

5 fois CONSÉCUTIVES

91
Q

De quoi sont maintenant accompagnés presque tous les tests psychométriques ?

A

Presque tous les tests psychométriques sont maintenant accompagnés d’une forme quelconque de normes intragroupe.

92
Q

Qu’est-ce qu’une norme intragroupe ? + un exemple

A

Les normes intragroupes permettent de situer la performance d’un individu en fonction de celle du groupe normatif (même âge et/ou même niveau scolaire).ex: les centiles

93
Q

Qu’est-ce qu’un centile ?

A

: un centile correspond au pourcentage des personnes de l’échantillon de normalisation dont le score est inférieur à un score brut donné. Par exemple, se 28% des personnes réussissent moins de 15 problèmes dans un test de raisonnement arithmétique, un score brut de 15 correspondra ainsi au 28e centile (C28). Ainsi, plus le centile est bas, plus le score de l’individu est faible.

94
Q

Plus le centile est bas, plus le score de l’individu est ______.

A

faible

95
Q

Que représente un centile de 0 ou de 100 ?

A

un score brut inférieur à tout autre score obtenu dans l’échantillon de normalisation recevra un centile de zéro (C0); un score brut plus élevé que tout autre score de l’échantillon de normalisation recevra un centile de 100 (C100). Mais attention : ces centiles ne représentent pas nécessairement un score brut de zéro ou un score brut parfait !

96
Q

Vrai ou faux: des centiles de 0 ou 100 ne sont pas interprétables

A

vrai

97
Q

Quels sont les avantages et inconvénient des centiles ?

A

Les avantages : il sont faciles à calculer; facilement compris; universellement applicable (enfants ou adultes); conviennent à tous les types de tests (d’aptitudes ou personnalité).
L’inconvénient : l’inégalité des distances entre les unités.

98
Q

À quelle échelle correspond les centiles ? pk ?

A

échelle ordinale, pcq distances entre les centiles ne sont pas les mêmes, donc pas échelle d’intervalles.

99
Q

Pourquoi, dès qu’on présente les centiles, on doit arrêter de calculer ? quelle est la solution ?

A

distance pas égale.

si on veut continuer de calculer, on utilise score z

100
Q

Pourquoi les tests en circulation utilisent de plus en plus les scores standards ?

A

. Ces scores dérivés s’avèrent satisfaisants dans le sens de faciliter des calculs subséquents.

101
Q

Les scores standards (scores z) proviennent de distributions _______

A

proviennent d’une distribution transformée (moyenne de zéro et ÉT de 1), pour l’ajuster à une courbe normale.
distr. transformée = distribution pas normale devient normale

102
Q

Quelles sont les moyenne/ÉT d’une distribution transformée ?

A

moyenne 0 ÉT 1

103
Q

Que signifie un score standardisé de 0, -1 ou +1 ?

A

Un score standard normalisé de zéro indique que l’examiné se situe au niveau de la moyenne d’une courbe normale, surpassant ainsi 50% du groupe. Un score de -1 signifie qu’il surpasse 16% du groupe, et un score de +1 qu’il est supérieur à 84% d’entre eux. Ces pourcentages correspondent à des distances de 1 écart-type au-dessous et au-dessus de la moyenne

104
Q

Quel est l’objectif du Qi ?

A

convertir les âges mentaux (AM) en un indice uniforme de la position relative d’une personne au sein d’un groupe de référence

105
Q

Comment était calculé le QI ?

A

. Il consistait à diviser l’âge mental (AM) par l’âge chronologique (AC), puis multiplier par 100 (éliminer les décimales).

106
Q

Qu’est-ce qui a ralenti l’utilisation du QI ?

A

Des problèmes techniques (même É-T pour tous les âges) et sociaux ont ralentis son utilisation.