SAU 9 Flashcards
Beskriv kommunikerende, adhærerende, og okkluderende celle-kontakter
Okkluderende kontakter:
Tight junctions (zonula occludens)
Adhærerende (forankrende) kontakter:
Celle-celle: Adherens junctions (adhæsionsbælter, zonula adhaerens), Desmosomer (Macula adherens)
Celle-ECM: Hemidesmosomer, Fokale adhæsioner
Kommunikerende kontakter:
Gap junctions (nexus).
Transmembrane proteiner er en væsentlig komponent i alle cellekontakter. For adhærerende kontakter forankres det cytosolære domæne af det transmembrane protein til cytoskelettet (enten aktin eller intermediære filamenter) via linkerproteiner (plaque protein).
Tight junctions: Placeret lateralt, lige under den apikale overflade, som et bælte rundt i cellen. De transmembrane proteiner, der kontakter tilsvarende proteiner fra nabocellen betegnes claudiner og occludiner. Hindrer paracellulær transport.
Adherens junctions: Placeret lateralt, ofte tæt på tight junctions, som et bælte rundt i cellen, med kontakt til aktin cytoskelettet. Transmembrane cadheriner associerer til cadheriner på naboceller. Giver mekanisk stabilitet, og indgår i dannelse af invaginationer af epitheliale overflade.
Desmosomer: Typisk placeret lateralt, ’punktvist’ rundt i cellen, med kontakt til intermediære filamenter. Cadheriner (desmoglein og desmocollin) indgår som de transmembrane proteiner. Giver mekanisk styrke.
Gap junctions: Typisk placeret lateralt, ’punktvist’ rundt i cellen. Connexoner opbygget af connexiner indgår. Tillader passage af ioner og små molekyler mellem naboceller.
Beskriv cellereceptorer (integriner) for adhæsive ECM glycoproteiner
Den extracellulære matrix (ECM) indeholder forskellige multiadhæsive glykoproteiner, heriblandt fibronectin og laminin. Disse proteiners egenskaber omfatter evnen til at sammenbinde transmembrane receptorer (integriner) fra celler med protein (typisk kollagen) i ECM. Fibronectin er generelt udbredt i bindevæv, mens laminin findes i basallamina.
Integriner er transmembrane proteiner involveret i cellers kontakt til ECM, og indgår bl.a. i hemidesmosomer og fokale adhæsioner. Hemidesmosomer giver forankring af epithelceller til basallamina, mens fokale adhæsioner typisk er involveret til cellers adhæsion i bindevæv, inkl. i forbindelse med cellulær migration. I begge tilfælde forankres cytoskelettet (intermediære filamenter i hemidesmosomer eller aktin i fokale adhæsioner) via linkerproteiner til den cytosolære del af integriner, som extracellulært er forankret til kollagenfibre via multiadhæsivt glykoprotein (laminin i hemidesmosomer eller fibronectin i fokale adhæsioner).
Redegør for cellekontakters betydning for opretholdelse af epithelers integritet
Overfladeepitheler danner generelt en beskyttende, og barrrieredannende ’membran’ på legemets ydre og indre overflader. Hovedfunktionen af forskellige typer overfladeepithel kan dog variere, hvilket bl.a. afspejler sig i de forskellige typer udformning epitheler kan have – eksempelvis enlaget vs flerlaget. Et enlaget epithel kan f.eks. mediere transport, mens et flerlaget epithel typisk danner en beskyttende barriere. For at et epithel skal kunne opretholde sin integritet og bevare sine egenskaber skal det danne relevante celle-celle og celle-ECM kontakter
Beskriv adhæsive glycoproteiner i ECM
Describe shortly how cells are able to interact with the collagen in the extracellular matrix
Cells are able to interact with the collagen in the extracellular matrix
thanks to a family of transmembrane receptor proteins called integrins. The extracellular domain of an integrin binds to components of the matrix, while its intracellular domain interacts with the cell cytoskeleton.
Describe how integrins interact directly with collagen fibers in the extracellular matrix
Integrins do not, however, interact directly with collagen fibers in the
extracellular matrix. Instead, another extracellular matrix protein,
fibronectin, provides a linkage: part of the fibronectin molecule binds to collagen, while another part forms an attachment site for integrins. When the extracellular domain of the integrin binds to fibronectin, the intracellular domain binds (through a set of adaptor molecules) to an actin filament inside the cell (Figure 20–14). For many cells, it is the formation and breakage of these attachments on either end of an integrin molecule that allows the cell to crawl through a tissue, grabbing hold of the matrix at its front end and releasing its grip at the rear.
Describe how integrin can be activated from the cytosolic side
an intracellular signaling molecule can activate the integrin from the cytosolic side, causing it to reach out and grab hold of an extracellular structure. Similarly, binding to an external structure can switch on a variety of intracellular signaling pathways by activating protein kinases that associate with the intracellular end of the integrin. In this way, a cell’s external attachments can help regulate its behavior—and even its survival.
Show how Fibronectin and transmembrane integrin proteins help attach a cell to the extracellular matrix
How many integrins do humans make?
Humans make at least 24 kinds of integrins, each of which recognizes distinct extracellular molecules and has distinct functions, depending on the cell type in which it resides.
Describe the function of integrins on white blood cells
For example, the integrins on white blood cells (leukocytes) help the cells crawl out of blood vessels at sites of infection so as to deal with marauding microbes. People who lack this type of integrin develop a disease called leucocyte adhesion deficiency and suffer from repeated bacterial infections. A different form of integrin is
found on blood platelets, and individuals who lack this integrin bleed excessively because their platelets cannot bind to the necessary bloodclotting protein in the extracellular matrix.
Show how An integrin protein switches
to an active conformation when it binds
to molecules on either side of the plasma
membrane.
How are chains og GAGs linked to a core protein?
Chains of GAGs are usually covalently linked to a core protein to form
proteoglycans, which are extremely diverse in size, shape, and chemistry.
Typically, many GAG chains are attached to a single core protein
that may, in turn, be linked to another GAG, creating a macromolecule
that resembles a bottlebrush.
Show how Proteoglycans and GAGs can form large aggregates.
Describe the proportion of GAGs in dense compact tissues and jellylike substances.
In dense, compact connective tissues such as tendon and bone, the
proportion of GAGs is small, and the matrix consists almost entirely of collagen (or, in the case of bone, of collagen plus calcium phosphate crystals).
The jellylike substance in the interior of the eye consists almost entirely of one particular type of GAG, plus water, with only a small amount of collagen. In general, GAGs are strongly hydrophilic
and tend to adopt highly extended conformations, which occupy a
huge volume relative to their mass. Thus GAGs act as effective “space fillers” in the extracellular matrix of connective tissues.
Show how Glycosaminoglycans (GAGs)
are built from repeating disaccharide
units.