Geometry 5 Flashcards

1
Q

circumcenter

A

intersection of the perpendiular bisectors of the sides of a triangle

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

incenter

A

intersection of the angle bisectors of the vertices of the triangle

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

concurrent lines?

A

3 or more lines intersecting at one point

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Is the incenter ever outside of the triangle?

A

No

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

When can the circumcenter be outside the triangle?

A

if the triangle is obtuse

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

When can the circumcenter of the triangle be on a side

A

if the triangle is right

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

When can the circumcent be inside the triangle?

A

when it is acute

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

What is the circumcenter always equidistant to?

A

the vertices

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

What is the incenter always equidistant to?

A

the sides

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

when is the incenter equidistant to the vertices/ or the circumcenter equidistant to the sides

A

if the triangle is equilateral.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

incircle versus circumcircle

A

the circle made from the intersections of the lines perpendicular to the sides is the incircle-
The circle made from the vertices of a triangle is the circumcircle.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

5.1&5.2 Perpendicular bisector theorem&converse

A

If a point is on the perpendicular bisector of a segment then its equidistant from the endpoints.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

5.5&5.4 Angle bisector theorem&converse.

A

If a point is on the angle bisector of an angle, it is equidistant from the angle sides

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Circumcenter theorem

A

The circumcenter of a triangle is equidistant from the vertices

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Incenter theorem

A

The incenter of a triangle is equidistant from it’s sides.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

medians

A

lines in a triangle from a vertax to the mid point of the opposite side.

17
Q

altitudes

A

A line showing the distance of a vertex from the opposite line, altitude is perpendicular to opposite line.

18
Q

Centroid

A

Intersection of the medians! ALWAYS inside triangle.

-2/3s the distance from the vertex t the opposite side (2/3s the way on the median)

19
Q

Orthocenter

A

intersection of all the altitudes.

20
Q

What do
-Altitudes
-Medians
- perpendicular bisectors
- angle bisectors
intersect to form?

A
  • altitudes- orthocenter
  • medians- centroid (center of gravity)
  • perpendicular bisectors- circumcenter
  • angle bisector- incenter
21
Q

What is the definition of inequalities

A

5=2+3
THEN
5 is greater than 2 and 3

22
Q

Theorem 5.8(Exterior angle inequality)

A

because m^1+m^2=m^3
THEN
m^1<m^3
and
m^2<m^3

23
Q

Theorem 5.9&5.10
-ASA relationships

A
  • AB>BC so m^B> m^A
  • CONVERSE
24
Q

comparison (properties of real numbers)

A

a<b, a=b, OR a>b

25
Q

5.11 Triangle inequality theorem

A

sides a,b and c
a+b<c
b+c<a
c+a<b

26
Q

what is an indirect proof

A