Chapter 2 - Derivative & Differential Flashcards

1
Q

如果_______, 那么函数 f(x) 在闭区间 [a,b] 上可导.

A

函数 <var>f(x)</var> 在开区间 (a,b) 内可导, 且左端点的右导数和右端点的左导数都存在.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

函数的和差积商的求导法则

A

如果两个函数都在点 x 处具有导数, 那么他们的和、差、积、商(除分母为零的点外)都在点 x 具有导数.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

反函数的求导法则 如果函数 x=f(y) 在区间 Iy 内__、__且_____, 那么它的反函数 y=f-1(x) 在区间 Ix={x|x=f(y), y∈Iy} 内也可导, 且_____.

A

单调、可导;
y 点处的导数不等于零;
反函数的导数等于原函数的导数的倒数.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

复合函数的求导法则 如果_______, 那么复合函数 y=f[g(x)] 在x点可导, 且其导数为 f’(u)·g’(x).

A

u=g(x) 在点 x 可导, y=f(u) 在点 u=g(x) 可导.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

(u+v)(n) 的各项系数

A

二项式定理展开的系数

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

可微的定义

A

设函数 y=f(x) 在某区间内有定义, x0 及 x0+Δx 在这区间内, 如果函数的增量 Δy=f(x0+Δx)-f(x0) 可表示为 Δy=AΔx+o(Δx), 其中 A 是不依赖于 Δx 的常数, 那么称函数 y=f(x) 在点 x0 是可微的, 而 AΔx 叫做函数 y=f(x) 在点 x0 相应于自变量增量 Δx 的微分, 记作 dy, 即 dy=AΔx.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

tan x ‘

A

sec2 x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

cot x ‘

A
  • csc2 x
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

sec x ‘

A

sec x·tan x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

csc x ‘

A
  • csc x·cot x
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

ax

A

ax ln a
(a>0 且 a≠1)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

logax

A

1/(x·ln a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

ln x ‘

A

1/x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

arcsin x ‘

A

1/√1-x2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

arccos x ‘

A
  • 1/√1-x2
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

arctan x ‘

A

1/(1+x2)

17
Q

arccot x ‘

A
  • 1/(1+x2)