AI Intro & Bakgrund Flashcards

1
Q

What does solving a problem mean in the context of AI?

A

Finding actions that effectively solve the problem, which may involve identifying the problem, having knowledge of standard problems and solutions, and applying the appropriate solution.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Can AI replace humans in problem solving?

A

Yes, if the process can be described and the related knowledge, such as standard problems and solutions, is available.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Is a washing machine considered an AI system or intelligent system?

A

No, a typical washing machine does not possess the ability to learn, reason, or adapt to new situations autonomously.
En tvättmaskin anses inte vara ett AI-system, men den kan betraktas som ett intelligent system beroende på dess funktioner.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

What criteria can be used to judge whether a machine is intelligent?

A

Problem-solving ability
Learning capability
Adaptability
Creativity
Natural language understanding and generation
Perception and understanding
Autonomy
Ethical and moral reasoning

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

What are the four views of AI?

A

Thinking humanly
Thinking rationally
Acting humanly
Acting rationally

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

What is “Thinking humanly” in AI?

A

Cognitive modeling, which involves applying the scientific method to study human cognition and developing scientific theories of internal brain activities.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

What are the challenges in “Thinking rationally” or “laws of thought”?

A

In other words “right thinking” give problems:
Uncertainty: Not all facts are certain.
Resource limitations: Solving a problem in principle vs. in practice under constraints like time and computation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

What does “Acting rationally” mean in AI?

A

It involves doing the right thing to maximize goal achievement based on the available information. This can include rational behavior without necessarily involving thinking.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

What does “Acting humanly” mean in AI?

A

The ability of artificial intelligence systems to mimic human behavior or actions. A machine can show behavior as a human.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

What is the Turing Test?

A

A method to determine whether a machine can demonstrate human intelligence by engaging in a conversation with a human without being detected as a machine.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Who pioneered the first AI program and what did it include?

A

Alan Turing, including the notion of computation (Turing machine), the programmable computer (universal Turing machine), the first chess program, and the Turing test.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

What are the steps involved in the Turing Test procedure?

A

Setup: Three participants (interrogator, human, machine) with isolated communication.
Objective: Machine convinces the interrogator it is human.
Procedure: Interrogator engages in conversations with both participants.
Testing: Machine’s success is based on generating human-like responses.
Passing the Test: If the machine consistently convinces the interrogator, it passes the test.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Does passing the Turing Test mean a machine is truly intelligent?

A

No, it demonstrates the machine’s ability to simulate human-like conversational behavior effectively, but it doesn’t necessarily mean the machine possesses true intelligence or consciousness.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

What tasks must be solved to create an AI system? (Replace a “profession”

A
  • Decision making, problem solving, language handling, learning, image
    processing, predicting, and cognition.
  • Define structure of expertise and expert knowledge
  • How an intelligent agent (a doctor/lawyer/etc) works, and acts with others
    (multi-agent system)
  • How is autonomy? That the agent works on his own.
  • How does the problem (customer/situation/artifact/…) perceive? (Perception)
  • How does thinking work when solving the problem (Cognition)
  • How one learns (Machine learning)
  • How to communicate in speech (natural language processing)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

What are the different types of Artificial Intelligence?

A

Weak AI
General AI
Super AI

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

What is Weak AI?

A

AI systems that behave like humans but do not provide insights into how the brain works, such as IBM’s Deep Blue chess play. Single task-based Algorithms, Dedicated for one task, Driven by industry, Practical

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

What is General AI?

A

AI that simulates the human brain, performing tasks as well as or better than humans and providing insights into brain functions.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

What is Super AI?

A

AI that exceeds human intelligence, with capabilities for judgement, learning, planning, reasoning, and communication, which remains a hypothetical concept.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

What are the key achievements of AI?

A

Facilitating and replacing human decision-making
Robots
Automatic process control
Limited spoken language understanding
Text, human, object, and emotion recognition
Smarter search engines
Observing and understanding human emotions
Solving mathematical problems

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

How does AI research and engineering work?

A

AI research and engineering involve:

Problem Definition
Data Collection and Preparation
Algorithm Selection and Development
Model Training
Evaluation and Validation
Iterative Improvement
Deployment and Integration
Monitoring and Maintenance

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

What disciplines are involved in AI research and engineering?

A

Computer science, mathematics, cognitive psychology, neuroscience, and more.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

What are the key historical milestones in AI development?

A

1943: McCulloch & Pitts: Boolean circuit model of brain
1950: Turing’s “Computing Machinery and Intelligence”
1956: Dartmouth meeting: “Artificial Intelligence” adopted
1950s: Early AI programs, including Samuel’s checkers program and Newell & Simon’s Logic Theorist
1965: Robinson’s complete algorithm for logical reasoning
1969-79: Early development of knowledge-based systems
1980: AI becomes an industry
1986: Neural networks return to popularity
1987: AI becomes a science
1995: The emergence of intelligent agents

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

What does AI do according to most AI research?

A

Select a specific problem to solve: study the problem, represent necessary knowledge, acquire and codify that knowledge, and build a problem-solving system.
Select a category of problem or cognitive activity: theorize a solution, build experimental systems, and modify as needed.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

What are intelligent agents and multi-agent systems in AI?

A

Intelligent agents are systems that perceive and act in an environment, and multi-agent systems involve multiple interacting intelligent agents.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

What are AI researchers focusing on instead of traditional “AI”?

A

Intelligent agents and multi-agent systems
Ontologies
Machine learning and data mining
Adaptive and perceptual systems
Robotics and path planning
Search engines, filtering, and recommendation systems
When we say that AI researchers are focusing on specific areas and applications rather than “traditional AI,” we mean that they are working on practical, specialized projects instead of trying to create a general, all-purpose artificial intelligence that can do anything a human can do.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

What are some approaches used in AI research?

A

Knowledge-based
Ontologies
Probabilistic (Bayesian Nets)
Neural Networks
Fuzzy Logic
Genetic Algorithms

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

What are some areas of current AI research interest?

A

Natural Language Understanding/Information Retrieval
Speech Recognition
Planning/Design
Diagnosis/Interpretation
Sensor Interpretation
Perception
Visual Understanding
Robotics

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

What are the key milestones mentioned in the AI timeline?

A

Teoretiska genombrott (30-40 talet)
Neural födelse (40-60 talet)
Klassisk era (50-60 talet)
Första vintern (70-talet)
En AI-industri föds och neural återkomst (80 talet)
Andra vintern (~1990-2010)
Nu (2010 -)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

Vad hände under teoretiska genombrott (30-40 talet)

A

Alan Turing (1912-1954)
Turing-maskin (1936)
Turing-test (1950)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q

What is “Beräkningsbarhet” (Computability)?

A

Definition: A process where we proceed from initially given objects (inputs) according to a fixed set of rules (algorithm) to arrive at a final result (output).
Key Concepts:
An operation is computable if it can be performed by a finite, mechanical procedure.
Algorithm: A mechanical step-by-step instruction on how to achieve a certain goal from a given starting position.
Example: Python function determining age eligibility.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q

What are decision problems (“Beslutsproblem”)?

A

Problems that can be posed as yes/no questions.
Example questions:
Given two numbers, x and y, is x evenly divisible by y?
Is a given number x a prime number?
In logical terms: Is there a mechanical way to determine if a certain conclusion follows from given premises?

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

What were the challenges identified with decision problems (beräkningsproblem) in the 1920s?

A

Some decision problems were suspected to be unsolvable.
Issues:
A proposed algorithm for solving a certain problem is easy to verify.
Proving that no algorithm can solve it is infinitely harder.
This requires a general theory of what algorithms can achieve in general.
This search for a general theory of what could be solved with algorithms interested many logicians.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q

What did Turing’s approach to decision problems help illustrate?

A

The notion that not all problems can be solved by algorithms.
The concept of computational limits and the fundamental principles of computability.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
34
Q

What are the three possible operations of a Turing Machine?

A

Read current symbol
Edit current symbol
Move the tape left or right

35
Q

What was the original intention behind Turing’s approach with the Turing Machine?

A

The Turing Machine can simulate any algorithm.
The purpose was not to construct a physical machine but to investigate what is computable in mechanical steps.

36
Q

What did Turing’s thought experiment with the Turing Machine demonstrate?

A

A very simple, mechanical process can theoretically solve all problems that can be represented symbolically.
The program that solves the problem can be stored in the same machine as the data.
Conclusion: A simply designed computer can solve all problems that can be programmed into it.

37
Q

What is the Turing Test, and what does it aim to determine?

A

A machine has a conversation with a human for five minutes, after which the human guesses if they were talking to a machine.
The conversation must be text-based.
A machine passes if it can deceive the human 30% of the time.
Turing predicted by the year 2000, machines would pass the test.
In 2014, a chatbot reportedly passed by convincing judges 33% of the time.

38
Q

Describe the neuron model proposed by McCullough & Pitts in 1943.

A

They aimed to model a biological nerve cell (neuron), which includes components like soma, dendrites, and axon terminals.
A simplified model of a neuron.
Showed that an artificial neuron can perform logical operations.
Represents logical connectives AND, OR, and NOT.
These are functionally complete: all logical operations can be described using them.

39
Q

What are the limitations of the neuron model?

A

Input signals are determined analytically based on the desired result.
The model is static and does not have the ability to learn.

40
Q

What are the key points of Donald Hebb’s work in 1949?

A

When a signal passes between neuron A and neuron B, the connection strengthens.
The next time a signal comes from A, it is more likely to activate B.
Signals from A become stronger each time the pathway is used.
Hebb’s learning rule: Δw_ab = k_ab

41
Q

What was Frank Rosenblatt’s goal with the perceptron, and what does it represent? (1958)

A

He aimed to simulate neurons based on Hebb’s rules.
Developed McCullouch & Pitts neuron model.
Weights are changeable and can learn based on Hebb’s principles.

42
Q

How can logical connectives be represented using a perceptron?

A

AND, OR, and NOT can be represented by the perceptron model.
Example truth table and representation of A OR B.

43
Q

What significant event in cognitive science took place in September 1956 at MIT?

A

The birth date of cognitive science: September 11, 1956.
Symposium at Massachusetts Institute of Technology, organized by “The Special Interest Group in Information Theory” from September 10-13.
Allen Newell and Herbert Simon presented “The Logic Theory Machine”.
IBM representatives discussed using one of the largest computers of the time to test Hebb’s theories.

44
Q

What were George A. Miller and Jerome Brunner’s sentiments about the 1956 MIT symposium?

A

George A. Miller felt that the symposium represented a unification of experimental psychology, theoretical linguistics, and computer simulation of cognitive processes.
Jerome Brunner noted the emergence of new metaphors for computing and the nurturing of the cognitive revolution.

45
Q

What was John von Neumann’s contribution presented at MIT in 1956?

A

Authored “The Computer and the Brain”.
One of the greatest mathematicians and pioneers in early computer science.
Developed the general design where a program stored in the computer’s memory controls its operations.

46
Q

What was the significance of the Dartmouth workshop in the summer of 1956?

A

10 mathematicians and logicians gathered at Dartmouth College, New Hampshire.
Proposed a 2-month, 10-man study of artificial intelligence.
Aimed to describe every aspect of learning and intelligence that a machine could simulate.
Focused on making machines use language, form abstractions, solve problems, and improve themselves.

47
Q

Dartmouth, veckorna innan - Grundstenen för AI läggs sommaren 1956

A

10 matematiker och logiker samlades vid Dartmouth College, New Hampshire
Bland de närvarande fanns fyra framstående inom tidig AI-forskning: John McCarthy, Marvin Minsky, Herbert Simon & Allen Newell

48
Q

Efteråt - AI-forskningens utveckling

A

Idén om att använda datorer för att imitera mänskliga tankeprocesser låg i tiden – startade med personer som Turing, von Neumann, McCullouch & Pitts
Stormig början: diskussioner om definitioner och metoder

49
Q

Efteråt - Tolkning av “intelligenta maskiner”

A

Weak View: Teoretiskt syfte att nå teoretisk förståelse
Programmen behöver inte vara intelligenta i sig själva
Verktyg för att förstå mänsklig kognition
Strong View: Praktiskt syfte att bygga fungerande system
Syfte att bokstavligen bygga tänkande maskiner

50
Q

Logic Theorist - Första AI-programmet (1956)

A

Utvecklades av Newell & Simon, visades under Dartmouth-sommaren
Syfte: Bevisa logiska teorem
Metod: Ta ett teorem som redan är bevisat och få en dator att självständigt komma fram till samma bevis

51
Q

Första försök och mottagande av Logic Theorist

A

Tester fungerade bra: Härledde till och med snyggare i vissa fall
Journal of Symbol Logic vägrade publicera resultaten
Fick ett svalt mottagande i Dartmouth, men George A. Miller var imponerad

52
Q

Teoretiska principer bakom Logic Theorist

A

Newell & Simon hävdade att programmet använde samma principer som människor
Kritik av McCullouch och andra som ville efterlikna hjärnan med neuronmodeller

53
Q

GPS - Problemlösaren (1959)

A

Newell & Simon skapade General Problem Solver (GPS) 1959
Kunde bevisa teorem, spela schack, lösa logiska pussel etc.
Programmet fungerade genom att sätta upp ett starttillstånd och ett måltillstånd, och minska avståndet mellan dem

54
Q

Kritik av GPS och symbolsystem

A

Newell & Simon hävdade att all mänsklig intelligens kan fångas i symbolsystem
Kritik:
GPS fungerade genom att strukturera upp problemen så att de kunde lösas
Människor kan improvisera lösningar, inte allt är logiskt härledbart

55
Q

Vilken chatbot blev mest känd under 60-talet?

A

ELIZA, skapad av Joseph Weizenbaum vid MIT 1964. Det var tänkt att efterlikna en konversation med en psykolog.

56
Q

Vad visar ELIZA om datorers förståelse av konversationer?

A

ELIZA visar att ingen “riktig” förståelse finns, den reagerar på vissa nyckelord. Syftet var inte att skapa ett intelligent program, utan att visa hur ytlig konversationen med datorer är.

57
Q

Vad var SHRDLU tänkt att göra?

A

SHRDLU skapades av Terry Winograd vid MIT. SHRDLU var tänkt att interagera med en tredimensionell mikrovärld bestående av “byggklossar.”

58
Q

Hur fungerar SHRDLU:s virtuella värld?

A

Programmet interagerar med klossar som om de existerade i verkligheten, genom att ge kommandon och ställa frågor på vanligt språk.

59
Q

Ge ett exempel på ett kommando SHRDLU kan utföra.

A

Exempel på kommandon är “grasp,” “move,” och “put.”

60
Q

Vad kunde SHRDLU göra med de givna kommandona?

A

SHRDLU kunde svara på frågor om världen, utföra kommandon baserat på textinput och rapportera resultatet.

61
Q

Vilken typ av AI representerar SHRDLU?

A

SHRDLU representerar symbolisk AI som arbetar med sökträd.

62
Q

Vad var en begränsning av SHRDLU:s värld?

A

SHRDLU kände bara till sin egna “värld” och dess vokabulär var begränsat till operationer inom denna.

63
Q

Vad gjorde SHRDLU:s parser tekniskt sett?

A

Parsern delade upp kommandon i ordklasser och analyserade hur substantiven var relaterade till verben och hur specifika scenarion var relaterade till varandra.

64
Q

Vad var i fokus under 50- och 60-talet inom AI?

A

Symbolisk AI. Viss framgång hade nåtts och man såg detta som den rätta vägen. Symbolisk AI fokuserade på logiskt problemlösande och användning av symboler för att representera kunskap.

Herbert & Newell.

65
Q

Vad hände med perceptronen?

A

Den verkade lovande, men inte mycket forskning lades på den och den hamnade i skymundan.

66
Q

Vad visade Marvin Minsky och Seymour Paperts bok “Perceptrons” (1969)? Vad innebär XOR i detta sammanhang?

A

Att perceptronen inte kunde representera XOR.

Exklusivt ELLER, vilket betyder att A ELLER B, men inte båda.

67
Q

Vad är problemet med att representera XOR med en perceptron?

A

Det går inte att hitta värden som representerar den önskade sanningsvärdestabellen för XOR.

68
Q

Vad blev konsekvensen av Minsky och Paperts kritik av perceptronen och vad var ironiskt med de algoritmer som skulle återuppliva forskningen på 80-talet?

A

Minskys bok dödade i princip all forskning inom neurala nätverk fram till 1980-talet, och all forskning koncentrerades på symbolisk AI.
De algoritmer som skulle återuppliva forskning upptäcktes faktiskt redan 1969 (t.ex. backpropagation).

69
Q

Vad var det största problemet med många av de problem som AI försökte lösa? (symbolisk AI)

A

Komplexiteten hos problemen, vilket gjorde att symbolmanipulerande program inte kunde skala upp effektivt då komplexiteten ökade exponentiellt.

70
Q

Kritik inom AI-vintern

A

Att AI inte levererat vad som utlovats och att människor skiljer sig fundamentalt från maskiner. Att AI hade stannat av på grund av fundamentala skillnader mellan människor och maskiner, och att all mänsklig intelligens inte kan fångas i formella regler och logik.

71
Q

AI inte helt dött, varför?

A

Roger Schank utvecklade “Script” som en metod att sätta språkliga uttryck i kontext (1969).
Marvin Minsky utvecklade “A framework for representing knowledge” och introducerade “Frames” som datastruktur för AI.

72
Q

Vad var expertssystemens intåg?

A

Symbolisk AI som försökte implementera logiskt problemlösande hade problem att skala upp. Alltså fungerade dåligt i stora komplexa system.

73
Q

Vad visade sig framgångsrikt med system som SHRDLU?

A

SHRDLU var framgångsrikt inom sin begränsade domän där det var expert.

74
Q

Vad ledde framväxten av expertssystem till?

A

Stora kunskapsdatabaser som kunde härleda beslut inom sin domän. Kunskapsrepresentation blev viktigt.

75
Q

Vad är kunskapsrepresentation?

A

Att representera kunskap i olika domäner (scenarion).

76
Q

Vem utvecklade script-teorin och vad användes den till?

A

Roger Schank utvecklade script-teorin för att hjälpa program att sätta språkliga uttryck i kontext.

77
Q

Vilket programmeringsspråk är ett exempel på representationssystem?

A

Prolog, ett logikprogrammeringsspråk för att representera både sats- och predikatlogiska fakta.

78
Q

Vad ledde till neuralnätens återkomst?

A

En ny våg där man fokuserade på neuralnätverks parallella natur.

79
Q

Vad löste de nya teorierna inom neuralnätverk?

A

Problemen med att perceptronen inte kunde representera XOR.

80
Q

Vad var problemen med expertsystemen under den andra AI-vintern?

A

Komplexiteten ökade exponentiellt och systemen levererade för lite jämfört med vad som utlovats. Neurala nät som nyss blivit återupplivad fanns inte tillräckligt med datorkraft för att visa resultat.

81
Q

Vad började användas för neurala nätverk runt 2010?

A

Runt 2010 började grafikkort (GPU) användas för neurala nätverk.

82
Q

Varför är GPU:er ideala för neurala nätverk?

A

GPU:er är konstruerade att utföra massiva parallella beräkningar, vilket är idealt för neurala nätverk.

83
Q

Varför fanns det inte tillräckligt med data att träna neurala nätverk på under 80-talet?

A

Under 80-talet fanns det inte tillräckligt med tillgänglig data. Idag har vi internet och enorma mängder med lättillgänglig data. Neurala nätverk behöver stora mängder med data att träna på.