15. BASIC PHYSICS OF PRESSURE AND FLOW IN FLUIDS Flashcards

1
Q
  1. What is the Law of Laplace?
A
  • it relates the Transmural Pressure
    (this is the difference between two sides of a wall)
  • TO the wall stress
  • this law gives the average stress over the wall
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q
  1. In a Cylindrical Vessel, what simple relation exists?
A
  • the relation between pressure
  • and the circumferential wall stress
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q
  1. What does the Law of Laplace only hold for?
A
  • it only holds for Simple Geometries
  • it applies to cylindrical and spherical geometries
  • regardless of whether the material is linear or
    nonlinear
  • regardless of whether the wall is thin or thick
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q
  1. In which field is the Law of Laplace most often used?
A
  • in Hemodynamics
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q
  1. What information does the Law of Laplace give us, with regards to Hemodynamics?
A
  • it gives us the relation between:
    - pressure within the lumen of a vessel (▵P)
    - the tension in the wall (T)
    - the vessel radius (R)

LUMEN= cavity or channel within a tube or tubular organ

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q
  1. How do we mathematically write the Law of Laplace?
A

T = ▵P x R

  • T = tension in the wall
    (a form of stress)
  • ▵P = pressure within the lumen of a vessel
  • R = radius of the cylinder
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q
  1. What is the only Limitation of Laplace’s Law?
A
  • it gives the average wall stress
  • it cannot give any information on the stress distribution across the wall
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q
  1. What bodily functions does the Law of Laplace help us understand?
A
  • Cardiac Function
  • Vascular Function
  • this law is of great conceptual importance
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q
  1. What is the main determinant of Wall Stress in the heart?
A
  • the ratio
    (r/h)
  • the ratio at the left ventricle apex and the base of the heart is the same
  • this means that there are similar wall stresses at both of these points
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q
  1. How do the Cardiac Muscle cells increase in thickness during Hypertension?
A
  • it builds more contractile proteins in parallel
  • this leads to a concentric hypertrophy
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q
  1. What do thicker Cardiac Muscle cells result in?
A
  • a thicker wall
  • this causes the systolic wall stress to return to normal levels
  • EVEN if there is a higher pressure in the systole
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q
  1. What is the Equation of Continuity?
A
  • it is a statement of the conservation of mass during flow
  • mass cannot be lost without some kind of disruption
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q
  1. When is the Product constant?

PRODUCT = p x A x v
p = density
A= area
v= speed

A
  • When a fluid of given density (p)
  • moves with an average speed (v)
  • in a tube with a cross-sectional area (A)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q
  1. What do the symbols A x v represent?
A
  • the volume flow per unit time
  • (m³ / s)
  • Av can also be found as Q
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q
  1. What do the symbols pAv represent?
A
  • mass per unit time
  • kg/m³ x m³/s = kg/s
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q
  1. What can be said about mass and volume when the substance is in a stable state?
A
  • the same mass flows into a volume
  • the same mass leaves the volume
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q
  1. LOOKING AT THIS IMAGE:
    • Suppose that an incompressible fluid fills this pipe
    • this fluid flows through the pipe

What can be inferred?

A
  • the flow of the incompressible fluid at point A1 is equal to the flow of the incompressible fluid at point A2
  • the mass flow rate is the same for point A1 and point A2
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q
  1. Looking at this image, how would we mathematically describe the continuity of the incompressible fluid?
A
  • Q = A1.v1
  • Q= A2.v2

THEREFORE:
A1.v1 = A2.v2

  • v1 is the average fluid speed over A1
  • v2 is the average fluid speed over A2
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q
  1. What can be said abut a gas that is moving at a low speed?
A
  • the density of the gas remains the same at different positions throughout the container that the gas is found in
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q
  1. What does Bernoulli’s Equation relate?
A
  • it relates blood pressure (P)
  • AND blood flow velocity (v)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q
  1. What can the Bernoulli Equation be viewed as?
A
  • an Energy Law
  • it expresses the conservation of energy in the flowing blood
22
Q
  1. What does Bernoulli’s equation state when pressure is lost due to friction?
    OR when turbulence is neglected
A
  • the sum of the fluid mechanical energy, fluid kinetic energy and fluid potential energy stay constant
  • FLUID MECHANICAL ENERGY = pressure energy
  • FLUID KINETIC ENERGY = ½.p.v²
  • FLUID POTENTIAL ENERGY = p.g.h
23
Q
  1. How can we describe Bernoulli’s Equation mathematically?
A

P + ½p.v² + p.g.h = CONSTANT

  • P = pressure energy (flow energy)
  • ½p.v² = kinetic energy
  • p.g.h = potential energy
24
Q
  1. With regards to total energy, what can be said about an organ filled with blood?
A
  • the total energy is constant
25
25. Why can the term p.g.h (Potential energy) be ignored when it comes to a blood vessel in the Supine Human?
WHEN VELOCITY IS VERY HIGH: - the pressure is low - this is because we have to incorporate the effects of friction and the change in the size of the vessels - this will make the flow of the blood turbulent
26
26. What does Bernoulli's equation predict with regards to pressure in blood vessels?
ACCORDING TO BERNOULLI: - after the blood vessel narrows: - the pressure is recovered completely IN REALITY: - pressure distal due to stenosis does not recover completely - this is due to energy losses by the fluid friction and by the turbulence STENOSIS= narrowing DISTAL = a part of the body that is farther away from the centre of the body than another part
27
27. What does Bernoulli's Law tell us with regards to fluid particles?
WHEN A FLUID PARTICLE DECELERATES: - the pressure increases WHEN A FLUID PARTICLE ACCELERATES: (such as with severe stenosis) - the pressure drops - the flow of blood is more turbulent
28
28. With regards to Bernoulli's Equation, what can be said about the energy per unit volume for any two points?
29
29. In the Supine Human, how can we work out pressure differences using Bernoulli's Equation?
30
30. How is Bernoulli's Equation Clinically applied?
- it is used for estimating the severity of aortic valve stenosis - it is used for estimating the severity of mitral valve stenosis - it is used for estimating the severity of arterial stenosis and aneurysms
31
31. What is the result of stenosis by plaque deposits?
- the blood velocity must be increased - this will result in a decrease in pressure - this will lead to further narrowing of the artery - the artery may then close entirely
32
32. What happens to the blood flow when the artery is narrowed?
- the blood flow will become more turbulent - the blood flow could possibly damage the arterial wall - this will damage the elasticity of the arterial wall
33
33. What is the result of the arterial wall becoming less elastic?
- the wall's vibrational characteristics will change - this can lead to resonant vibrations - these will dislodge the plaque deposits
34
34. What is an aneurysm?
- it is a localised bulge in the artery - it is ballon like
35
35. What happens when the radius of the Aneurysm increases?
- the velocity of the blood flow increases - the pressure decreases - the wall of the artery is weakened further - this increases the chance of the aneurysm rupturing
36
36. What does Poiseuille's Law describe?
- the relation between: - the pressure drop (▵P) - the fluid flow (Q) - this is all measured under steady conditions
37
37. What are the characteristics of the laminar flow of fluids through a tube/vessel? LAMINAR= a flow that takes place along constant streamlines, without turbulence
- each fluid layer will stay at the same constant distance from the centre - the velocity profile (v.r) is parabolic
38
38. What are three factors that flow is strongly dependent on?
1. the radius of the tube (this is known as the fourth power) 2. the pressure drop over the tube length (▵P / l) 3. the viscosity of the fluid (η)
39
39. What is the formula that describes the velocity (v) as a function of the radius (r)?
v = velocity ▵P =change in pressure ri = initial radius r = centre line = usually equal to zero = this is the maximum velocity η = viscosity of the fluid = fluid coefficient l = length of the tube
40
40. How is Blood Flow (Q) worked out?
Q = blood flow ▵P = change in pressure η = viscosity of fluid l = length of tube π = pi ri = initial radius NB: this shows how Poiseuille's Law relates ▵P and Q to each other : it does this through a uniform (constant) radius : and through a stiff blood vessel
41
41. How would we work out the Volume Flow Rate?
- velocity x surface area - v x (P . r² / 4)
42
42. What are the three major assumptions for Poiseuille's Law to hold?
1. the tube is stiff . it is straight . it is uniform 2. the fluid is Newtonian . meaning that the viscosity is constant 3. the flow is laminar . it is steady . it it not pulsatile (strong regular rhythm) . the velocity at the wall is zero
43
43. What is a more general form of Poiseuille's Law?
- Q = ▵P / R - R = resistance
44
44. How is R (Resistance) calculated?
R = Resistance η = viscosity of fluid l = length of the tube/vessel π = pi ri = initial radius
45
45. What is this law used in analogy with?
- it is used in analogy to Ohm's Law of electricity - this is where the resistance is equal to: - voltage drop / current - the voltage difference is compared to the pressure drop - the current is compared to the volume flow - the resistance can be calculated from pressure and flow measurements
46
46. Read through Summary 1. Does everything make sense?
- yes
47
47. Read through Summary 2. Does everything make sense?
- yes
48
48. Read through Summary 3. Does everything make sense?
- yes
49
49. Read through Summary 4. Does everything make sense?
- yes
50
50. Read through Summary 5. Does everything make sense?
- yes