primitieven regels Flashcards

1
Q

f(x)= axⁿ

A

F(x)= (a/n+1) * xⁿ+¹ + c
met n ≠ 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

f(x)= g^x

A

F(x)= 1/ln(g) * g^x +c

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

f(x)= e^ax

A

F(x)= 1/a * e^x + c

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

f(x)= 1/x

A

F(x)= ln|x| +c

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

f(x)= g log(x)

A

F(x)=1/ln(g) * (x*ln(x) - x) + c

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

f(x)= sin(x)

A

F(x)= -cos(x) +c

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

f(x)= cos(x)

A

F(x)= sin(x) + c

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

f(x)= ln(x)

A

F(x)= x*ln(x) - x + c

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

f(x)= g*(ax+b)

A

F(x)= 1/a * G(ax+b) + c
bv. f(x)= (ax+b)³ => F(x)= 1/3 * (ax+b) * 1/a + c

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

subsitutiemethode

A

je kiest een u en dan doe du/dx=u’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

partieel integreren

A

∫ fg’ dx= fg - ∫ f’*g dx
met f= f’= niet moeilijker dan f
en g= niet moeilijker dan g’ g’=

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

noemer kwadratisch primitieveren schrijven als (x-p)²

A

1) evt staartdelen
2) deel teller uit door x-p
=> f(x)=x+6+ (28x-54)/(x-3)²
–> 28x-54=28(x-3) + x om het te laten kloppen
3) schrijf als getal/x-p + getal/x-q
4) primitieveren

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

noemer kwadratisch primitieveren schrijven als (x-p)(x-q)

A

1) evt staartdelen
2) f(x)= a/(x-p) + b/(x-q)
=> herleiden naar …/(x-p)(x-q)
3) a en b vinden door middel van stelsel

How well did you know this?
1
Not at all
2
3
4
5
Perfectly