Photosynthesis Flashcards
) Which of the following are products of the light reactions of photosynthesis that are utilized in the Calvin cycle? A) CO2 and glucose B) H2O and O2 C) ADP, i, and NADP+ D) electrons and H+ E) ATP and NADPH
E) ATP and NADPH
2) Where does the Calvin cycle take place?
A) stroma of the chloroplast
B) thylakoid membrane
C) cytoplasm surrounding the chloroplast
D) interior of the thylakoid (thylakoid space)
E) outer membrane of the chloroplast
A) stroma of the chloroplast
3) In autotrophic bacteria, where are the enzymes located that can carry on carbon fixation (reduction of carbon dioxide to
carbohydrate)?
A) in chloroplast membranes
B) in chloroplast stroma
C) in the cytosol
D) in the nucleoid
E) in the infolded plasma membrane
C) in the cytosol
When oxygen is released as a result of photosynthesis, it is a direct by-product of
A) reducing NADP+.
B) splitting water molecules.
C) chemiosmosis.
D) the electron transfer system of photosystem I.
E) the electron transfer system of photosystem II.
B) splitting water molecules
Which of the events listed below occurs in the light reactions of photosynthesis?
A) NADP is produced.
B) NADPH is reduced to NADP+.
C) Carbon dioxide is incorporated into PGA.
D) ATP is phosphorylated to yield ADP.
E) Light is absorbed and funneled to reaction-center chlorophyll a.
E) Light is absorbed and funneled to reaction-center chlorophyll a.
) Which statement describes the functioning of photosystem II?
A) Light energy excites electrons in the thylakoid membrane electron transport chain.
B) Photons are passed along to a reaction-center chlorophyll.
C) The P680 chlorophyll donates a pair of protons to NADP+, which is thus converted to NADPH.
D) The electron vacancies in P680+ are filled by electrons derived from water.
E) The splitting of water yields molecular carbon dioxide as a by-product.
D) The electron vacancies in P680+ are filled by electrons derived from water.
Which of the following are directly associated with photosystem I?
A) harvesting of light energy by ATP
B) receiving electrons from the thylakoid membrane electron transport chain
C) generation of molecular oxygen
D) extraction of hydrogen electrons from the splitting of water
E) passing electrons to the thylakoid membrane electron transport chain
B) receiving electrons from the thylakoid membrane electron transport chain
What are the products of linear photophosphorylation? A) heat and fluorescence B) ATP and P700 C) ATP and NADPH D) ADP and NADP E) P700 and P680
C) ATP and NADPH
What does the chemiosmotic process in chloroplasts involve?
A) establishment of a proton gradient across the thylakoid membrane
B) diffusion of electrons through the thylakoid membrane
C) reduction of water to produce ATP energy
D) movement of water by osmosis into the thylakoid space from the stroma
E) formation of glucose, using carbon dioxide, NADPH, and ATP
A) establishment of a proton gradient across the thylakoid membrane
In a plant cell, where are the ATP synthase complexes located?
A) thylakoid membrane only
B) plasma membrane only
C) inner mitochondrial membrane only
D) thylakoid membrane and inner mitochondrial membrane
E) thylakoid membrane and plasma membrane
D) thylakoid membrane and inner mitochondrial membrane
Which of the following statements best describes the relationship between photosynthesis and respiration?
A) Respiration runs the biochemical pathways of photosynthesis in reverse.
B) Photosynthesis stores energy in complex organic molecules, whereas respiration releases it.
C) Photosynthesis occurs only in plants and respiration occurs only in animals.
D) ATP molecules are produced in photosynthesis and used up in respiration.
E) Respiration is anabolic and photosynthesis is catabolic
B) Photosynthesis stores energy in complex organic molecules, whereas respiration releases it.
Where are the molecules of the electron transport chain found in plant cells? A) thylakoid membranes of chloroplasts B) stroma of chloroplasts C) outer membrane of mitochondria D) matrix of mitochondria E) cytoplasm
A) thylakoid membranes of chloroplasts
Reduction of oxygen to form water occurs during
A) photosynthesis only.
B) respiration only.
C) both photosynthesis and respiration.
D) neither photosynthesis nor respiration.
E) photorespiration only
B) respiration only
Reduction of NADP+ occurs during A) photosynthesis. B) respiration. C) both photosynthesis and respiration. D) neither photosynthesis nor respiration. E) photorespiration.
A) photosynthesis.
Generation of proton gradients across membranes occurs during
A) photosynthesis.
B) respiration.
C) both photosynthesis and respiration.
D) neither photosynthesis nor respiration.
E) photorespiration
C) both photosynthesis and respiration.
P680+ is said to be the strongest biological oxidizing agent. Why?
A) It is the receptor for the most excited electron in either photosystem.
B) It is the molecule that transfers electrons to plastoquinone (Pq) of the electron transfer system.
C) It transfers its electrons to reduce NADP+ to NADPH.
D) This molecule has a stronger attraction for electrons than oxygen, to obtain electrons from water.
E) It has a positive charge.
D) This molecule has a stronger attraction for electrons than oxygen, to obtain electrons from water.
In thylakoids, protons travel through ATP synthase from the thylakoid space to the stroma. Therefore, the catalytic “knobs” of ATP
synthase would be located
A) on the side facing the thylakoid space.
B) on the ATP molecules themselves.
C) on the pigment molecules of photosystem I and photosystem II.
D) on the stromal side of the membrane.
E) built into the center of the thylakoid stack (granum).
D) on the stromal side of the membrane.
The reactions that produce molecular oxygen (O2) take place in
A) the light reactions alone.
B) the Calvin cycle alone.
C) both the light reactions and the Calvin cycle.
D) neither the light reactions nor the Calvin cycle.
E) the chloroplast, but are not part of photosynthesis
A) the light reactions alone.
Where do the enzymatic reactions of the Calvin cycle take place? A) stroma of the chloroplast B) thylakoid membranes C) matrix of the mitochondria D) cytosol around the chloroplast E) thylakoid space
A) stroma of the chloroplast
What is the primary function of the Calvin cycle?
A) use ATP to release carbon dioxide
B) use NADPH to release carbon dioxide
C) split water and release oxygen
D) transport RuBP out of the chloroplast
E) synthesize simple sugars from carbon dioxide
E) synthesize simple sugars from carbon dioxide
In C3 photosynthesis, the reactions that require ATP take place in
A) the light reactions alone.
B) the Calvin cycle alone.
C) both the light reactions and the Calvin cycle.
D) neither the light reactions nor the Calvin cycle.
E) the chloroplast, but is not part of photosynthesis.
B) the Calvin cycle alone.
The NADPH required for the Calvin cycle comes from
A) reactions initiated in photosystem I.
B) reactions initiated in photosystem II.
C) the citric acid cycle.
D) glycolysis.
E) oxidative phosphorylation.
A) reactions initiated in photosystem
Reactions that require CO2 take place in
A) the light reactions alone.
B) the Calvin cycle alone.
C) both the light reactions and the Calvin cycle.
D) neither the light reactions nor the Calvin cycle.
E) the chloroplast, but is not part of photosynthesis
B) the Calvin cycle alone.
Which of the following statements best represents the relationships between the light reactions and the Calvin cycle?
A) The light reactions provide ATP and NADPH to the Calvin cycle, and the cycle returns ADP, i, and NADP+ to the light
reactions.
B) The light reactions provide ATP and NADPH to the carbon fixation step of the Calvin cycle, and the cycle provides water and
electrons to the light reactions.
C) The light reactions supply the Calvin cycle with CO2 to produce sugars, and the Calvin cycle supplies the light reactions with sugars
4
to produce ATP.
D) The light reactions provide the Calvin cycle with oxygen for electron flow, and the Calvin cycle provides the light reactions with
water to split.
E) There is no relationship between the light reactions and the Calvin cycle.
A) The light reactions provide ATP and NADPH to the Calvin cycle, and the cycle returns ADP, i, and NADP+ to the light
reactions.