Macro Formula Flashcards
Nominal GDP
GDP deflator X real GDP
Consumption function
C = c0 + c1(Yd)
Yd=(Y-T)
Goods market (just c function)
Y = (1/1-c1) (c0+I+G-c1T)
Multiplier
1/1-c1
I function
I = b0 - b2i + b1Y
C + I
C + I = c0-c1T + b0 -b2i + c1Y +b1Y
Slope = c1Y + b1Y
Goods market equilibrium Y*
Y* = 1/1-c1-b1 [ c0-c1T+b0-b2i+G ]
G multiplier
1/1-c1 (G2-G1)
I multiplier
1/1-c1 (I2-I1)
Tax multiplier
-c1/1-c1 (T2-T1)
D checkable deposits (Dd)
Dd = (1-c) Md
GDP deflator
= nominal GDP / real GDP X 100
D reserves by banks (Rd)
Rd=θ(1-c)Md
D central bank money (Hd)
Hd = [c+θ(1-c)]Md
Md
Md=$YL(i)
=H[1/(c+θ(1-c))
LM relation
L(i)=Md/$Y
M/P=YL(i)
Overall supply of money
Central bank money X mm (1/(c+θ(1-c))
Is relation
Y=C + I + G
Gov bonds
I = maturity price / actual price -1
AS
P=Pe(1+μ)F(u,z)
u=1-Y/L
–> P=Pe(1+μ)F(1-Y/L, z)
Price setting
P=(1+μ)W
–> W/P=1/(1+μ)
Perfectly competitive μ=0, P=W
Less competition μ increases
Wage setting
W/P= Pe/P F(u,z)
Equilibrium in labour market (WS=PS)
Pe/P F(u,z) = 1/(1+μ)
Natural level of output
Yn=Nn=L(1-Un)
Employment level
N=L(1-u)
Interest parity condition
(Ignores transaction costs and risk)
1+i(t))=(1+i*(t)) E(t)/Ee(t+1
Real ε
E P / P*
P=p UK g £
P*=p USA g $
E= nominal exchange rate
Relation domestic i + foreign i + expected rate depreciation of domestic currency
(1+i(t)) = (1+i *(t)) / [1+(Ee(t+1) - E)/E(t)]
Approximation
i(t) ~ i*e - Ee(t+1) - E(t) / E(t)
i must be roughly equal to foreign i + depreciation rate of domestic currency
–> Ee(t+1) = E(t) then i(t) = i*(t)
Exchange rate
E(t) = Ee(t+1) [1+i / 1+i*]
Where to I?
1+i = 1+i* / 1+ [Ee(t+1) - E(t) / E(t)]
Open economy D for domestic goods
Z = C+I+G-IM/ε+X
IM
$IM(Y, ε)
X
X(Y*, ε)
Current exchange rate
E = 1+i / 1+i* X Ee
Open economy: IS
Y=c(Y-T) + I(Y,i) + G + NX(Y, Y, 1+i/1+i Ee)
Open economy: LM
M/P=YL(i)
Saving
NX= S + (T-G) - I
S= I+G-T-IM/ε+X
Inflation
π(t)=πe(t)+(μ+z)-αu(t)
As πe(t)=θπ(t-1) –> π(t)=θπ(t-1)+(μ+z)-αu(t
Original Philips curve
π(t)=(μ+z)-αu(t)
Modified Philips curve
π(t)-π(t-1)=(μ+z)-αu(t)
Un - natural rate unemployment
Un = μ + z / α
NRU: π(t)-π(t-1)= -α(u(t)-un)
Proportion labour contracts indexed (λ)
π(t)=?
π(t)-πe(t)= -α(u(t)-un)
π(t)=[λπ(t)+(1-λ)πe(t)] -α(u(t)-un)
Okun’s law
u(t)-u(t-1) = β(g(yt) - g(y))
Philips curve
π(t)-π(t-1)=
AD (growth)
g(yt)=g(mt)-π(t)
Demand for currency CUd
CUd=cMd